Structure-Based Design of Nonpeptidic HIV Protease Inhibitors from a Cyclooctylpyranone Lead Structure

Karen R. Romines, ${ }^{*,{ }^{\dagger}}$ Keith D. Watenpaugh, ${ }^{\dagger}$ W. Jeffrey Howe, ${ }^{\ddagger}$ Paul K. Tomich, ${ }^{\S}$ Kristine D. Lovasz, ${ }^{\dagger}$ Jeanette K. Morris, ${ }^{\dagger}$ Musiri N. Janakiraman, ${ }^{\dagger}$ Janet C. Lynn, ${ }^{\S}$ Miao-Miao Horng, ${ }^{\S}$ Kong-Teck Chong, ${ }^{\perp}$ Roger R. Hinshaw, ${ }^{\perp}$ and Lester A. Dolak ${ }^{\S}$
Structural, Analytical, and Medicinal Chemistry Research, Computer-Aided Drug Discovery, Chemical and Biological Screening, Cancer and Infectious Diseases Research, Upjohn Laboratories, Kalamazoo, Michigan 49001

Received June 19, 1995^{\circledR}

Abstract

Recently, the novel cyclooctylpyranone HIV protease inhibitor 1 was identified in our labs, and an X-ray structure of this inhibitor complexed with HIV-2 protease was obtained. This crystal structure was used to develop two strategies for creating derivatives of 1 with enhanced enzyme inhibitory activity. The first strategy, substitution on the cyclooctyl ring, met with limited success, but provided some interesting information about the conformationally-flexible cyclooctyl ring on the inhibitors. The second strategy, substitution at the meta position of the aryl ring, was far more successful and generated compounds, such as the carboxamide derivatives $41\left(K_{\mathrm{i}}=3.0 \pm 0.4 \mathrm{nM}\right)$ and $\mathbf{3 6}\left(K_{\mathrm{i}}=4.0 \pm 0.8 \mathrm{nM}\right)$, which were significantly more active than the corresponding unsubstituted cyclooctylpyranone $2\left(K_{\mathrm{i}}=11.7 \pm 4.7 \mathrm{nM}\right)$. An X-ray crystal structure of $\mathbf{3 6}$ complexed with HIV-1 protease indicated the increase in binding affinity is most likely due to the additional interactions between the amide substituent and the S3 region of the protease.

Introduction

Inhibition of the HIV protease enzyme represents a promising therapeutic strategy for treatment of the escalating problem of HIV infection. ${ }^{1}$ Although a number of HIV protease inhibitors have been identified to date, the majority of the more effective inhibitors are peptide-derived structures. ${ }^{2}$ Such structures, however, often suffer from poor pharmacokinetic properties, such as low oral bioavailability and rapid excretion, thus limiting their usefulness as clinical agents. ${ }^{3}$ The search for small, nonpeptidic protease inhibitors has focused on 4-hydroxypyrone and 4-hydroxycoumarin structures identified through screening efforts. ${ }^{4}$ Using a 4-hydroxycoumarin structure as our lead, we recently discovered the cyclooctylpyranone inhibitors 1 and $2 .{ }^{5}$ The cyclooctylpyranone 2 showed good inhibitory activity of the HIV proteases ($K_{\mathrm{i}}=11.7 \pm 4.7 \mathrm{nM}$ against HIV-1, $K_{1}=16 \mathrm{nM}$ against HIV-2) and excellent pharmacokinetic properties in rats $\left(F=91-99 \%, t_{1 / 2}=4.9 \mathrm{~h}\right)$. These factors, combined with the easy accessibility of the new inhibitor (synthesis in only three steps), made it an excellent template for further drug design.

$1 \mathrm{R}=\mathrm{Et}$
$2 \mathrm{R}=\mathrm{CPr}$
$3 \mathrm{R}=\mathrm{H}$
An X-ray crystal structure of $\mathbf{1}$ complexed with HIV-2 protease showed that the pyrone ring of this cyclooctylpyranone inhibitor binds into the active site and the

[^0]

Figure 1. X-ray crystal structure of $\mathbf{1}$ (green with oxygen atoms shown in red) complexed with HIV-2 protease (represented by the white dot surface) showing the substituents of the pyrone ring occupying three of the enzyme pockets adjacent to the active site. The ethyl group is found in the S 1 region, the phenyl group occupies the S2 region, and the cyclooctyl ring folds into the S1' region. The arrows shown on the C-6 α position of the cyclooctyl ring indicate the two possible trajectories for a substituent at this position of the ring, provided the resulting inhibitor assumes the same binding conformation as that shown for $\mathbf{1}$.
substituents on the pyrone ring occupy three of the adjacent enzyme pockets. ${ }^{5,6}$ The cyclooctyl ring folds into the $S 1^{\prime}$ pocket of the enzyme, while the two substituents α to the C-3 position of the pyrone ring, the ethyl group and the phenyl group, occupy the S1 and S2 regions, respectively (Figure 1). It is interesting to note that the cyclooctylpyranone analog with an unbranched substituent at the C-3 position (3), which is presumably only able to occupy two of the enzyme pockets adjacent to the active site, was far less active against the HIV protease (no enzyme inhibition at 30

Scheme 1^{a}

$\mu \mathrm{M}){ }^{5}$ We became interested in exploring this relationship between the enzyme inhibitory activity of a compound and the number of pockets adjacent to the active site that the structure is able to occupy. If this straightforward relationship did exist, we surmised that we could design more potent enzyme inhibitors simply by substituting our lead structures, 1 and 2 , in a manner that would allow the new substituents to interact with previously-unoccupied regions of the protease near the active site.

Substitution on the Cycloalkyl Ring. Study of the X-ray structure of 1 complexed with HIV-2 protease suggested two potential sites for substitution, one of which was on the cyclooctyl ring. It appeared to be possible to reach the S^{\prime} region of the HIV protease by substituting on this alkyl ring at the carbon α to the C-6 position of the pyrone ring (see Figure 1). We were cautioned, however, by the well-established flexibility of the cyclooctyl ring, ${ }^{5}$ a factor which has the potential to introduce a number of variables into the predictive process and thus complicate inhibitor design. We also noted that two protons could be substituted at the C-6 α position. In the conformation shown in the X-ray structure, axial substitution (ax. arrow in Figure 1) would vector the substituent in the desired direction, whereas equatorial substitution (eq. arrow in Figure 1) would be more likely to collide with the protein atoms.

Since alkylation at the C-6 α position of the cycloalkylpyranones is a straightforward process, we started our investigation by generating mixtures of diastereomers for evaluation in the enzyme inhibition assay. A dianionic intermediate can be formed from inhibitors with the structure of 4 using 2 equiv of LDA, and subsequent addition of an alkyl halide produces the desired products 5 (Scheme 1). This transformation works well for cycloalkylpyranones (4) with various substituents at the $\mathrm{C}-3$ position of the pyrone ring and with various ring sizes.

Table 1 lists the substituted derivatives and their enzyme inhibitory activities; also listed are the unsubstituted compounds to allow for comparison." Use of quite small (i.e. $\mathrm{Me}, 6$) and relatively large (i.e. benzyl, 7 and 9) substituents resulted in decreases in enzyme inhibitory activity relative to the unsubstituted inhibitors 1 and 8 . Increasing the flexibility of the large substituent was also not beneficial, as is illustrated by 16, which was considerably less active than its unsubstituted parent 2. Substitution of smaller groups, however, on inhibitor 2 produced several derivatives which were good inhibitors ($K_{\mathrm{i}}<35 \mathrm{nM}$), but even the best of these analogs ($14, K_{\mathrm{i}}=24 \mathrm{nM}$) was, at best, comparable to the unsubstituted inhibitor 2.

The possibility that the cyclooctyl ring on the compounds substituted above might be too large and

Table 1

no.	ก	R^{\prime}	R^{2}	R^{3}	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{\mathbf{a}}$
1	2	Et	Ph	H	58.3 ± 26.1
6	2	Et	Ph	Me	330
7	2	Et	Ph	$\mathrm{CH}_{2} \mathrm{Ph}$	266 ± 69
8	2	cPr	cPr	H	57
9	2	cPr	cPr	$\mathrm{CH}_{2} \mathrm{Ph}$	260
2	2	cPr	Ph	H	11.7 ± 4.7
10	2	cPr	Ph	Et	33
11	2	cPr	Ph	$n-\mathrm{Pr}$	26
12	2	cPr	Ph	$n-\mathrm{Bu}$	31
13	2	CPr	Ph	$\mathrm{CH}_{2} /-\mathrm{Pr}$	30
14	2	cPr	Ph	$\mathrm{CH}_{2} \mathrm{CPr}$	24
15	2	cPr	Ph	$\left(\mathrm{CH}_{2}\right)_{2} \stackrel{\mathrm{Pr}}{ }$	50
16	2	cPr	Ph		120
17	1	cPr	Ph	H	96
18	1	cPr	Ph	$\mathrm{CH}_{2} \mathrm{OCH}_{3}$	$n 0^{\text {b }}$
19	1	cPr	Ph	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}$	28
20	1	cPr	Ph	$\mathrm{CH}_{2} \mathrm{CPr}$	24

${ }^{\text {a }} K_{i}$ determinations were generally performed once except for the control compounds included to validate each experiment. The error determined in calculating the K_{i} value is derived from the fit of the data points to the theoretical curve for a competitive enzyme inhibitor (see ref 7). For those compounds which were tested more than once, the average K_{i} value with the standard error from the mean is given. For the control compounds tested, the values were $0.82 \pm 0.11 / i \mathrm{M}$ (phenprocoumon, ${ }^{\circ} n=2$), $45.3 \pm$ 9.3 nM ($\mathcal{C}-96988,^{7} n=6$), and $11.7=4.7 \mathrm{nM}(2, n=8){ }^{\circ} \mathrm{nd}$ indicates K_{i} value was not determined due to relatively low protease inhibition.
substitution could therefore lead to steric crowding led us to investigate substitution of the somewhat smaller seven-membered ring analog 17. In fact, two of the three substituted derivatives of $\mathbf{1 7}$ shown in Table 1 are significantly better protease inhibitors than unsubstituted parent compound. Substitution of a methylcyclopropyl group (20) or a methoxy ethyl ether (19) was quite favorable. Substitution of a methoxy methyl ether (18), however, resulted in a very poor inhibitor.

The results discussed above indicate this strategy of substitution on the cycloalkyl ring is a promising way to increase the enzyme inhibitory activity of the cycloheptylpyranones, but it is a less successful tactic for improving the potency of the cyclooctylpyranones. As was noted above, the conformational flexibility of me-dium-sized rings has been well-documented. It is very likely that the conformational preferences of these rings change as the rings are substituted and that the size of the ring influences those preferences. In the case of the substituted cyclooctylpyranones, for example, conformational analysis ${ }^{8}$ of the unbound ligand with the S-configuration at the C-6 a position indicated that this inhibitor was 3.1 kcal less stable in the axial orientation, which would project toward the $\mathrm{S} 2^{\prime}$ site, than in an equatorial orientation. Any productive interaction with the enzyme obtained by this substitution would be reduced by the amount of this conformational bias. On

Scheme $2^{\prime \prime}$

"Reagents: (a) c-PrCH 1 OH)-m-($\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph} / \mathrm{Ph}(22), p$ TsOH , toluene, 62%; (b) Pd ' C , cyclohexene, reflux, 68%.
the other hand, a similar analysis of the sevenmembered analog revealed only a 0.95 kcal bias against the axial form. In this case, the same productive interaction of the substituent with the S2' site would have less of a conformational bias to work against, providing a greater contribution toward potency relative to that of the eight-membered series.

As noted above, the new inhibitors shown in Table 1 are all diastereomeric mixtures. We chose to further investigate the potential of this substitution strategy by separating one of the more active mixtures, 11 , into its four-component diastereomers. ${ }^{10}$ Two of these stereoisomers, $11 \mathbf{c}\left(K_{i}=15 \pm 2.8 \mathrm{nM}\right.$) and 11e ($K_{\mathrm{i}}=9 \pm$ 1 nM), proved to be considerably more active than the other two isomers, $11 \mathrm{~b}\left(K_{\mathrm{i}}=210 \pm 65 \mathrm{nM}\right)$ and $11 \mathrm{f}\left(K_{\mathrm{i}}\right.$ $=90 \pm 30 \mathrm{nM}$. Presumably, the two more active stereoisomers are better able to achieve a favorable binding conformation than the other two stereoisomers, but the overall gain in binding affinity relative to the unsubstituted compounds $\mathbf{2}$ and $\mathbf{2 b}$ is still negligible, indicating that the energy penalty to achieve this conformation is still significant. This is in contrast to the unsubstituted cyclooctylpyranone 2 , where the lowest energy conformation of the molecule in its unbound state is very similar to its conformation when bound. ${ }^{5}$ Although this C-6 α substitution strategy did not provide a strategy for dramatic improvement of the enzyme inhibitory activity of the lead structure, it did allow us to make some interesting observations about the binding behavior of these conformationally-flexible, medium-sized rings, which are an unusual structural feature in enzyme inhibitors.

Substitution of the Aryl Ring. The second potential substitution site on the lead structure is found on the opposite side of our lead structure, away from the conformational complexities associated with the cyclooctyl ring. Study of the X-ray crystal structure of 1 and related compounds ${ }^{11}$ complexed with HIV proteases indicated a substituent at the meta position of the phenyl ring could potentially reach the S3 region of the protease (see Figure 1). Molecular modeling, which included overlay of the related 4-hydroxypyrone template with a peptidic protease inhibitor, indicated a hypothetical meta substituent on the phenyl ring of the nonpeptidic inhibitor would overlap with an amide bond of the peptidic inhibitor. ${ }^{11}$ This observation prompted us to explore the potential for hydrogen bonding by substituting polar functional groups, which were linked to nonpolar groups designed to interact with the hydro-

Scheme 3^{a}

a Reagents: (a) $\mathrm{RN}=\mathrm{C}=\mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}, 63-74 \%$; (b) $\mathrm{ClCO}_{2} \mathrm{R}$, pyridine, $0^{\circ} \mathrm{C}, 60-78 \%$; (с) $\mathrm{RCH} 2_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{BOP} \cdot \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 53-$ 61%; (d) Lawesson's reagent, PhCH_{3}, reflux 54%.
phobic S3 region of the enzyme, at the phenyl group's meta position.

Our first step was to establish a chemical handle at the desired meta position of the phenyl ring of the lead cyclooctylpyranone structure 2 . Since a number of different polar functional groups could be derived from an amine intermediate (24), this was chosen as our initial target. Synthesis of 24 was accomplished in two steps from the known cyclooctylpyranone 21 (Scheme 2). Alkylation of this cyclooctylpyranone using the secondary alcohol 22 yielded the C-3-substituted cyclooctylpyranone 23. The protecting group on the amine was then removed under transfer hydrogenation conditions. The resulting intermediate amine (24) showed moderate HIV protease inhibitory activity ($K_{\mathrm{i}}=78 \mathrm{nM}$).

Compounds with four different functional groups were subsequently derived from the amine intermediate 24 (Scheme 3). Reaction of the amine 24 with isocyanates yielded the urea derivatives 25 and $\mathbf{2 6},{ }^{12}$ and a similar reaction with chloroformates produced the desired carbamates 27 and 28. ${ }^{13}$ The amide analogs 29 and 30 were prepared from 24 and the appropriate carboxylic acid in the presence of bis(2 -ox0-3-oxazolidinyl)phosphinic chloride. ${ }^{14}$ The thioamide $\mathbf{3 1}$ was then generated by reaction of $\mathbf{3 0}$ with Lawesson's reagent. ${ }^{15}$ Of this group of compounds, the best enzyme inhibition values were observed with the ethyl carbamate 27 ($K_{i}=19 \mathrm{nM}$) and the two amide derivatives, $29\left(K_{\mathrm{i}}=24 \mathrm{nM}\right)$ and $\mathbf{3 0}$ ($K_{\mathrm{i}}=33 \mathrm{nM}$).

An X-ray crystal structure of 27 complexed with the HIV-1 protease was obtained (Figure 2), and this structure showed a binding pattern very similar to the unsubstituted cyclooctylpyranone 1. As expected, the pyrone ring bound into the active site of the protease and formed hydrogen bonds with the Asp 25, Asp 25', Ile 50 , and Ile 50^{\prime} residues of the protease. The cyclooctyl ring then folded into the S^{\prime} region, the cyclopropyl group occupied the S1 region, and the aryl ring filled the S 2 region. The carbamate functional group, however, was able to form additional hydrogen bonds with the Gly 48', Asp 29', and Asp 30^{\prime} residues of the protease. These hydrogen-bonding interactions,

Figure 2. X-ray crystal structure of inhibitor 27 complexed with HIV-1 protease showing the hydrogen bonds formed between the inhibitor and enzyme residues (carbon atoms are shown in green, nitrogen atoms in blue, and oxygen atoms in red). The hydrogen bonds observed in the active site between the 4 -hydroxyl group of the pyrone ring and the Asp 25 and Asp 25^{\prime} residues are very similar to those seen for other cyclooctylpyranone inhibitors, including 1. Inhibitor 27 is able to form additional weak hydrogen bonds, however, between the carbonyl of the carbamate group and the Asp $29^{\prime}(3.67 \AA)$ and Asp $30^{\prime}(3.57 \AA)$ residues. A hydrogen bond is also formed between the NH of the carbamate group and the Gly 48^{\prime} residue ($3.28 \AA$).
however, are relatively weak and are not likely to enhance the binding affinity of this analog. This observation is consistent with the similar K_{i} values measured for 27 and the unsubstituted analog 2.

Encouraged by the new hydrogen-bonding interactions shown in the X-ray crystal structure of 27 complexed with HIV protease and the reasonably good enzyme inhibitory activity of 29 and 30 , we chose to further explore the amide derivatives of $\mathbf{2}$. First, a few additional amide derivatives with aryl substitution were synthesized and evaluated (Table 2). Although the phenyl (32) and p-fluorophenyl (33) analogs both showed fairly good enzyme inhibitory activity, these derivatives were clearly not more potent than the unsubstituted lead structure 2 . Coupling of the amide 24 with several N-BOC-protected amino acids, however, produced a number of potent amide derivatives (Table 2). In fact, two of these compounds, $\mathbf{3 6}$ and 41, were significantly more active against the HIV-1 protease than the unsubstituted cyclooctylpyranone 2.
Several interesting structure-activity relationships emerged from amide derivatives formed by coupling of various amino acids to 24 . The analogs with one- and two-carbon chains, $\mathbf{3 5}$ and $\mathbf{3 6}$, both had K_{i} values lower than the derivative with a three-carbon chain, 37. There is some space for substitution on the carbon chain at the position α to the amide. Both the L-alanine (38) and the L-histidine (41) derivatives were very good enzyme inhibitors with K_{i} values of 6.9 and 3.0 nM , respectively. On the other hand, the cyclic analog 40, which was derived from L-proline, had a much higher K_{i} value (43 nM). Control of the chiral center α to the amide also appears to be important. The D and L amino

Table 2
32
${ }^{a} K_{\mathrm{i}}$ values were determined three times.
acids of alanine and histidine were coupled to the aniline 24 to form 38, 39, 41, and 42. In both cases, the L amino acid produced the more potent enzyme inhibitor.

An X-ray crystal structure of $\mathbf{3 6}$ complexed with HIV-1 protease was also obtained (Figure 3). Once again, the pyrone ring formed hydrogen-bonding interactions with the Asp 25, Asp 25', Ile 50, and Ile 50' residues of the active site, and the cyclooctyl, cyclopropyl, and aryl substituents occupied the S1', S1, and S2 regions of the protease, respectively, as in the case of the unsubstituted cyclooctylpyranone 1. Also, as in the case of the ethyl carbamate derivative 27, the amide functional group was able to form weak hydrogen bonds with the Gly 48', Asp 29', and Asp 30' residues of the protease. The superior binding affinity of the amide $\mathbf{3 6}$ appears to be related to its ability to occupy the S3 region of the protease. The NH of the tert-butyl carbamate appears to be forming a hydrogen bond with a water molecule ($2.79 \AA$), which is in turn hydrogen bonding with the Asp 29^{\prime} residue ($3.76 \AA$). The X-ray crystal structure also indicates that the tert-butyl group fits into the hydrophobic pocket of the S3 region. Presumably, these hydrophobic interactions are making an important contribution to the increased binding affinity of $\mathbf{3 6}$ relative to the unsubstituted parent compound 2.

Several of the more active derivatives of 2 synthesized above were evaluated in an antiviral assay (Table 3). ${ }^{16}$ Inhibitor 11e, which had an IC_{50} value of $5.3 \mu \mathrm{M}$ in this assay, was more than 10 -fold more active than the unsubstituted analog $2\left(\mathrm{IC}_{50}=60 \mu \mathrm{M}\right)$. Several of the m-carboxamide derivatives, including $\mathbf{3 6}\left(\mathrm{IC}_{50}=33 \mu \mathrm{M}\right)$,

Figure 3. X-ray crystal structure of $\mathbf{3 6}$ (white) complexed with HIV-1 protease (represented by the white dot surface) compared to the X-ray crystal structure of $\mathbf{2 7}$ (green). Inhibitor 36 is able to form the same hydrogen-bonding interactions as 27, and the cyclooctyl ring, cyclopropyl group, and the aryl ring occupy the same regions of the enzyme ($\mathrm{S}^{\prime}, \mathrm{S} 1$, and S 2 , respectively). The N-BOC-protected amine substituent, however, is able to fold into the S3 region, which cannot be reached by the ethyl substituent of 27 . Presumably, the additional binding interactions in the S3 region account for much of the enhanced enzyme inhibitory activity of $\mathbf{3 6}$ relative to $\mathbf{2 7}$.
Table 3

no.	enzyme inhibitory activity, $K_{\mathrm{i}}(\mathrm{nM})^{a}$	antiviral activity, $\mathrm{IC}_{50}(\mu \mathrm{M})^{b}$
$\mathbf{2}$	11.7 ± 4.7	57.3
$\mathbf{1 1 e}$	9 ± 1	5.3
$\mathbf{2 5}$	72	>0
$\mathbf{2 6}$	450	21.7
$\mathbf{2 9}$	240	35.1
$\mathbf{3 0}$	33	17.3
$\mathbf{3 2}$	420	23.5
$\mathbf{3 3}$	55	21.9
$\mathbf{3 4}$	470	17.1
$\mathbf{3 5}$	5.5 ± 1.8	29.8
$\mathbf{3 6}$	4.0 ± 0.8	33.4
$\mathbf{3 7}$	14	49.5
$\mathbf{3 8}$	6.9	31.8
$\mathbf{3 9}$	32	>60
$\mathbf{4 0}$	43	29.2
$\mathbf{4 1}$	3.0 ± 0.4	45.3

${ }^{a}$ HIV protease inhibition was measured against HIV-1 protease and K_{i} values were determined as described in ref 7. ${ }^{b}$ Antiviral activity was measured in HIV-1-infected H9 cells as described in ref 16 .
showed an approximately 2 -fold increase in antiviral activity. There is, however, a poor correlation between the enzyme inhibitory activity and the antiviral activity of these protease inhibitors. The X-ray crystal structures and modeling techniques are excellent tools for designing structures with enhanced enzyme inhibitory activity, but there are a number of other factors, including protein binding, cell permeability, and intracellular distribution, just to name a few, which can ultimately influence the antiviral activity of an inhibitor. ${ }^{17}$

Conclusions

In summary, the X-ray crystal structure of 1 bound to HIV-protease provided the basis for two strategies with the potential to generate derivatives of the cyclooctylpyranone lead structures with enhanced protease

Table 4. Summary of Selected Diffraction Data Collection and Refinement Statistics for the Three HIV Protease Inhibitor Complexes

	complex A	complex B	complex C
protease	HIV-2	HIV-1	HIV-1 ${ }^{a}$
inhibitor	$\mathbf{1}$	$\mathbf{3 6}$	$\mathbf{2 7}$
space group	$P 2_{1} 2_{1} 2_{1}$	$P 6_{1} 22$	$P 2_{1} 2_{1} 2_{1}$
unit cell			
$\quad a(\AA)$	33.38	63.36	60.28
$\quad b(\AA)$	45.28	63.36	88.52
$\quad c(\AA)$	133.36	84.19	46.46
resolution (\AA)	2.3	2.6	2.5
no. of observations	33887	45388	38538
unique reflections	8579	5940	9067
\% complete	90	100	99.7
R merge	0.064	0.118	0.92
R factor (refinement)	0.187	0.156	0.167
rms deviations			
\quad distance (\AA)	0.034	0.020	0.017
\quad angle (deg)	4.021	2.897	2.662
\quad fixed dihedrals (deg)	10.581	10.004	8.162
\quad flexible dihedrals (deg)	16.111	15.214	15.099

${ }^{a}$ In this complex, the protease employed was the triple mutant W7K/L331/L631.
inhibitory activity. The second strategy, substitution at the meta position of the phenyl ring, was quite successful and generated compounds which were significantly more active than the lead cyclooctylpyranone 2. An X-ray crystal structure of the carboxamide derivative 36 complexed with HIV protease indicates this dramatic increase is most likely due to additional interactions between the tert-butyl carbamate substituent and the S3 region of the protease. This result, obtained through structure-based drug design, represents an important step forward in our continuing development of potent, nonpeptidic protease inhibitors.

Experimental Section

X-ray Crystallography: (A) Crystallization. The preparation and purification of the recombinant HIV-1 protease, HIV-2 protease, and a triple mutant of HIV-1 protease (Q7K/ L33I/L63I) have been described elsewhere. ${ }^{16,18,19}$ The protein preparation of HIV-2 protease contains a Lys ${ }^{57} / \mathrm{Leu}$ mutation, but has been found to be indistinguishable in activity and specificity from the wild-type enzyme. The crystals of the proteases complexed with the selected inhibitors were obtained by cocrystallization experiments in which $2 \mu \mathrm{~L}$ of the inhibitor solution ($0.1 \mathrm{mg} / \mu \mathrm{L}$ concentration) in DMSO was added to 130 $\mu \mathrm{L}$ of the freshly thawed ice-cold protease solution (ca. $6 \mathrm{mg} /$ mL concentration) and the mixture equilibrated on ice for 30 min . The undissolved inhibitor that precipitates upon mixing was removed by centrifugation. In the case of HIV-1 proteases, crystals were grown at room temperature in $4-7 \mu \mathrm{~L}$ hanging drops by vapor diffusion against a precipitant of $0.75-2.0 \mathrm{M}$ NaCl at $\mathrm{pH} 4.8-5.2$ (0.1 M acetate buffer), $5.4-5.8(0.1 \mathrm{M}$ citrate buffer). In the case of HIV-2 protease, they were grown against a precipitant of $30-35 \%$ (w/v) PEG 4000 at $\mathrm{pH} 6.8-$ 7.6 (0.1 M HEPES buffer). Larger single crystals could occasionally be grown by addition of $1-3 \% 1$-butanol to the well solution.
(B) Data Collection. A single crystal of each complex was used for data collection in all three cases. Diffraction data were collected using a Siemens X-1000 area detector, with X-rays generated by a Siemens rotating anode source operating at $45 \mathrm{kV}, 96 \mathrm{~mA}$. Measurements were made as a series of 0.25° frames, with an exposure time of 240 s per frame in the cases of complexes A and B and an exposure time of 180 s per frame for complex C. Data sets were processed using XENGEN data reduction software. ${ }^{20}$ Table 4 summarizes the data collection statistics of the three data sets along with statistics from the refinement of the models. The effective resolution of each crystal was taken as the maximum resolution for which
the mean I / σ was greater than 2.0 . Data beyond this maximum were discarded and not used in the crystallographic refinement.

Structure Refinement. Since the space groups of the protease/inhibitor complexes A, B, and C were the same as ones previously refined in our laboratory, refinement of these protease models could be initiated without resolving the position of the molecule in the cell. Whereas the crystallographic refinement on complex A was performed using the PROLSQ, ${ }^{21}$ the structural refinement for the complexes B and C was carried out using CEDAR, ${ }^{2 ?}$ with periodic manual rebuilding using the interactive graphics programs FRODO (for complex A ${ }^{23}$ and CHAIN (for complexes B and C) ${ }^{24}$ based on $2 \mid F_{0}-F$. and $F_{0}-F_{\text {. }}$. electron density maps. Electron density maps were calculated using the XTAL package of crystallographic programs. ${ }^{25}$ The inhibitors and solvent molecules were added during later stages of the refinements. The atomic coordinates of these structures will be deposited with the Protein Data Bank. ${ }^{.6}$

Chemistry. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Bruker AM $300(300 \mathrm{MHz}$) instrument using tetramethylsilane as an internal standard. All other physical data were measured by the Analytical Chemistry group of Upjohn Laboratories. Flash chromatography was performed on 230-400 mesh silica gel 60 .

Representative Procedure for the Preparation of 6-7, 9-16, and 18-20. 4-Hydroxy-10-methyl-3-(1-phenylpro-pyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyran-2-one (6). A $50-\mathrm{mL}$, three-necked, round-bottomed flask fitted with a nitrogen inlet and a $10-\mathrm{mL}$, pressure-equalizing addition funnel was charged with diisopropylamine $10.15 \mathrm{~mL}, 1.08$ mmol) and 2 mL of THF, and the addition funnel was charged with a solution of $2(0.134 \mathrm{~g}, 0.43 \mathrm{mmol})$ in 6 mL of THF. The flask was placed in an ice bath, and n-butylithium 0.68 mL of 1.6 M solution in hexanes, 1.08 mmol , was added dropwise. After stirring at $0{ }^{\circ} \mathrm{C}$ for 20 min , the reaction mixture was cooled to $-40^{\circ} \mathrm{C}$, and the solution of 2 was added dropwise. The resulting bright yellow solution was stirred for 25 min at ca. $-40^{\circ} \mathrm{C}$. Iodomethane $(0.037 \mathrm{~mL}, 0.43 \mathrm{mmol}$! was added dropwise, and the reaction mixture was stirred another 1 h as it warmed to $0^{\circ} \mathrm{C}$. The pale yellow solution was quenched with 10 mL of $10 \% \mathrm{HCl}$, and a small amount of NaCl was added. The reaction mixture was then extracted with two $30-$ mL portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, filtered, and concentrated in vacuo to give 0.162 g of a yellow solid. Column chromatography on 25 g of silica gel elution with $10-20 \%$ EtOAc/hexane) yielded $0.057 \mathrm{~g}(41 \% i$ of 6 as a white solid: mp $182-186{ }^{\circ} \mathrm{C} ;{ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.44-7.35 \mathrm{~m}, 4 \mathrm{H}, 7.30-$ $7.25(\mathrm{~m}, 1 \mathrm{H}$, 5.89 (br s, 0.5 H), 5.82 ibr s, 0.5 H , $4.43-4.33$ ($\mathrm{m}, 1 \mathrm{H}$), 3.07-3.00(m, 1 H), 2.71-2.61 (m, 1 H), 2.24-2.12 (m, 2 H , $2.09-1.98$ (m, 1 H), $1.73-1.51$ (m, 6 H), 1.39-1.15 $(\mathrm{m}, 2 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.99(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{19} \mathrm{C}$ NMR (CDCl_{3}) $\delta 165.4,163.8,162.9,162.8 .141 .7,141.6,129.4$. $127.6,127.3,111.0,110.9,106.0,105.9,41.3,41.1,37.9,33.5$, $33.4,30.2,30.1,26.9,26.0,24.0,23.9,22.8,22.7,16.9,12.3$, 12.2 ppm ; IR (mineral oil) $3131,3086,3058,3026,1669,1632$, $1546,1535 \mathrm{~cm}^{-1}$; MS (EI) miz $326\left(\mathrm{M}^{-}\right)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3}\right) \mathrm{C}$, H.

10-Benzyl-4-hydroxy-3-(1-phenylpropyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyran-2-one (7): $0.041 \mathrm{~g} 132 \%$) of white solid; mp 76-80 ${ }^{\circ} \mathrm{C}$ dec; ' ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.40-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 6 \mathrm{H}), 5.77-5.75(\mathrm{~m}, 1 \mathrm{H}) 4.40-4.35$ ($\mathrm{m}, 1 \mathrm{H}$), 3.30-3.19 (m, 2 H), 2.88-2.81 (m, 1 H), 2.78-2.59 (m, 1 H), 2.21-1.94(m, 3 H), $1.70-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.33-1.23$ ($\mathrm{m}, 2 \mathrm{H}$) , 1.05-0.90 (m, 3 H) ppm; IR (mineral oil) 3158,3103 , 3085, 3061, 1659, 1630, $1543 \mathrm{~cm}^{-1}$; MS (EI) m/z 402 (M-1. Anal. ($\mathrm{C}_{2}-\mathrm{H}_{311} \mathrm{O}_{3}$) C, H .

10-Benzyl-3-(dicyclopropylmethyl)-4-hydroxy-5,6,7,8, 9,10-hexahydrocycloocta[b]pyran-2-one (9): $0.085 \mathrm{~g}(43 \%$) of white solid; mp $94-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.49$ (br s, 1 H), 7.29-7.14 (m, 5 H), $3.29-3.21$ (m, 2 H), 2.89-2.75 (m, 3 Hi, $2.22-2.13(\mathrm{~m}, 1 \mathrm{Hi}, 1.84-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 4$ H), $1.43-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.53-0.43(\mathrm{~m}, 8$ H) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 194.4,164.0,160.9,140.2,128.9$, $128.3,125.9,111.9,105.0,40.9,39.2,37.3,35.2,30.2,27.1,25.6$, $23.0,12.4,12.2,3.6,3.4,2.5,2.2 \mathrm{ppm}$; IR (mineral oil) 3366 ,
$3139,3078,3065,3026,3000,1657,1631,1543 \mathrm{~cm}^{-1}$; MS (EI) $m / z 378\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.

3-(Cyclopropylphenylmethyl)-10-ethyl-4-hydroxy$\mathbf{5 , 6 , 7 , 8 , 9 , 1 0 - h e x a h y d r o c y c l o o c t a [b] p y r a n - 2 - o n e ~ (1 0) : ~} 0.103$ $\mathrm{g}(44 \%)$ of white solid; $\mathrm{mp} 94-9 \mathrm{~B}^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.54-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38 \mathrm{dd}, J=7.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 7.28(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.99(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.84-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.01-$ $1.97(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.98-$ $0.86(\mathrm{~m}, 4 \mathrm{H}), 0.76-0.71 \mathrm{~m}, 1 \mathrm{H}), 0.64-0.57 \mathrm{~m}, 2 \mathrm{H}$), $0.32-$ $0.27(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{12} \mathrm{C}$ NMR (CDCl ${ }_{3!}$! $\delta 165.7,163.8,162.3$. $141.1,129.2,128.0,127.9,127.5,112.5,112.4,106.0,105.8$, $43.8,43.6,41.0,40.9,35.7,30.5,30.4,27.3,25.8,24.4,23.1$, $13.2,13.1,12.8,5.0,4.7,3.8 \mathrm{ppm}$; IR (mineral oil! 3137,3075 , 3060, 3024, 1658, 1632, $1545 \mathrm{~cm}^{-1}$; MS (EI! m/z 352 (M). Anal. $\left\{\mathrm{C}_{23} \mathrm{H}_{2 \times} \mathrm{O}_{3}\right.$! C, H .

3-(Cyclopropylphenylmethyl)-4-hydroxy-10-propyl $\mathbf{5 , 6 , 7}, \mathbf{8}, 9,10$-hexahydrocycloocta[b]pyran-2-one (11): 0.093 $\mathrm{g}(34 \%)$ of white solid; $\mathrm{mp} 78-84^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ N $\mathrm{MR}\left(\mathrm{CDCl}_{5}\right)$) 7.51 (dd, $J=7.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}$, 7.38 dd , $J=7.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (dd, $J=7.2,2.6 \mathrm{~Hz} .1 \mathrm{H}$), 6.24 (s, 0.5 H , 6.21 ($s, 0.5 \mathrm{Hi}, 4.04$ ${ }^{\prime} \mathrm{d}, J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}, 2.97-2.91$ (m, 1 H , 2.76-2.69 (m, 1 H , $2.18-2.14$ (m, 1 H), 2.02-1.94 ($\mathrm{m}, 1 \mathrm{H}$) $, 1.78-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.26 \mathrm{im}, 6 \mathrm{H}), 1.22-1.07$ ($\mathrm{m}, 1 \mathrm{H}$) $, 0.95-0.86(\mathrm{~m}, 3 \mathrm{H}), 0.77-0.71(\mathrm{~m}, 1 \mathrm{H}, 0.65-0.57$ $\left(\mathrm{m}, 2 \mathrm{H}, 0.31-0.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}:{ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right)$ d 165.7 . $163.8,162.4,141.1,129.2,128.0,127.9,127.4,112.3$. 112.2 . $106.0,105.8,43.8 .43 .6,38.6$. 38.5. 35.9, 33.4. 30.5. 30.4, 27.3 . $25.8,25.7,23.1,21.2,14.1,13.2,13.1,5.1,4.7,3.8 \mathrm{ppm} ;$ IR (mineral oil) 3141, 3075, 3060, 3025, 1658, 1632, 1546 cm MS (EI) miz 366 (M^{-}. Anal. $\mathrm{C}_{2} \mathrm{H}_{3!} \mathrm{O}_{3}$, C. H.

10-Butyl-3-(cyclopropylphenylmethyli-4-hydroxy-5,6,7,8,9,10-hexahydrocycloocta [b]pyran-2-one (12): 0.178 $\mathrm{g}(62 \%)$ of white solid: $\mathrm{mp} 78-82^{\circ} \mathrm{C}$; ${ }^{\prime} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{4}\right) \delta 7.52$ (dd, $J=2.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}$) 7.38 (dd, $J=7.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}$). 7.29 (dd, $J=2.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.22 \mathrm{ibr} \mathrm{s}, 1 \mathrm{H}), 4.05 \mathrm{id}, J=8.3 \mathrm{~Hz}$. 0.5 H ।, 3.98 d , $J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}, 2.92-2.89 \mathrm{~mm}, 1 \mathrm{H}, 2.76-$ $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.17 / \mathrm{m} .1 \mathrm{H}, 1.98-1.96(\mathrm{~m}, 1 \mathrm{H}) .1 .78-$ $1.59(\mathrm{~m}, 6 \mathrm{Hi}, 1.56-1.46(\mathrm{~m}, 1 \mathrm{H} \mathrm{I}, 1.40-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.23-$ $1.09(\mathrm{~m}, 1 \mathrm{H}, 0.93-0.86(\mathrm{~m}, 3 \mathrm{H}), 0.76-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.64-$ $0.57(\mathrm{~m}, 2 \mathrm{H}, 0.32-0.27 \mathrm{n}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{12} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$) 〕 165.6. 163.6, 162.4, 141.0, 129.1, 127.9, 127.8, 127.3, 112.1, $105.9,43.7,43.5,38.8 .38 .7,35.7,30.9,30.4$. 30.3, 30.2, 27.2. 25.6. 23.0, 22.6, $14.0,13.1,13.0,4.9,4.6,3.7 \mathrm{ppm}$; IR (mineral oil! 3140, 3075, 3060, 3025, 1657, 1632, $1545 \mathrm{~cm}^{-1}$, MS (EI) miz $380\left(\mathrm{M}\right.$). Anal. ($\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3}$ ' C, H .

3-(Cyclopropylphenylmethyl)-4-hydroxy-10-isobutyl-5,6,7,8,9,10-hexahydrocycloocta[b]pyran-2-one (13): 0.073 $\mathrm{g}\left(26{ }^{\circ}\right)$ of white solid; $\mathrm{mp} 86-92^{\circ} \mathrm{C} ;{ }^{2} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}{ }^{\prime}$) 7.51 $1 \mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 7.37$ (dd, $J=7.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}, 7.29 \mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}$! 6.21 's. 0.5 H , $6.20 \mathrm{is}, 0.5 \mathrm{H}), 4.04 \mathrm{~d}, J=8.4$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.98 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H} \cdot 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}$, $2.74-2.67$ (m, $1 \mathrm{H}, 2.21-2.18 \mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.65$ (m, 2 H), $1.61-1.57$ (m, 4 H !. $1.34-1.22(\mathrm{~m}, 4 \mathrm{H}$), $1.19-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 6 \mathrm{H}), 0.75-0.73(\mathrm{~m}, 1 \mathrm{H})$, $0.63-0.58(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} . \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$) $165.5,163.6 .162 .3,162.2,141.0,129.2,129.1,128.1,128.0$, $127.4,112.0,105.9,105.7 .43 .7 .43 .5,40.2,40.1,36.3,36.0,35.9$. $30.5,30.4,27.3,26.1,26.0,25.6,23.2,23.1,22.4,22.3,13.1$, $5.0,4.6,3.7 \mathrm{ppm}$; IR mineral oil $13134,3076,3060,3025,1658$, $1633,1545 \mathrm{~cm}^{-1}$: MS (EI $/ \mathrm{m} / \mathrm{z} 380\left(\mathrm{M}^{-1}\right.$. Anal. $\left.\mathrm{C}_{53} \mathrm{H}_{32} \mathrm{O}_{3}\right) \mathrm{C}$, H.

10-(Cyclopropylmethyl -3-(cyclopropylphenylmethyl)-4-hydroxy-5,6,7,8,9, 10-hexahydrocycloocta $[b]$ pyran-2one (14): $0.132 \mathrm{~g}(49 \%)$ of white solid; $\mathrm{mp} 86-90^{\circ} \mathrm{C}$: ${ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{Hi}, 7.38(\mathrm{dd}, J=7.4,7.1 \mathrm{~Hz}$, $2 \mathrm{H}, 7.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{brs}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 0.5 \mathrm{H}, 3.99 \mathrm{id}, J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}, 3.07-3.03 \mathrm{~m}, 1 \mathrm{H}$, $2.78-2.73$ (m, $1 \mathrm{H}, 2.24-2.20 \mathrm{~m}, 1 \mathrm{Hi}, 2.02-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 4 \mathrm{H}) .1 .21-1.14(\mathrm{~m}, 1 \mathrm{H})$, $0.86-0.64(\mathrm{~m}, 2 \mathrm{H}), 0.63-0.58(\mathrm{~m}, 2 \mathrm{H}, 0.43-0.39 \mathrm{~m}, 2 \mathrm{H})$ $0.32-0.27(\mathrm{~m}, 1 \mathrm{H}), 0.09-0.07(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) o $165.5,163.7,162.4,162.3,141.0,129.1,127.9,127.8,127.3$, $112.0,105.9,105.7,43.6,43.5,39.5,39.4,36.2,35.5,30.4,30.3$, $27.2,25.7,25.6,23.0,13.1 .13 .0,9.6,9.5 .4 .9 .4 .6 .4 .4,3.7,3.6$
ppm; IR (mineral oill $3141,3075,3061,3024,1657,1631,1545$ cm^{-1}; MS (EI) $\mathrm{m} / \mathrm{z} 378\left(\mathrm{M}^{+}\right.$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.

3-(Cyclopropylphenylmethyl)-4-hydroxy-10-(3-methyl-butyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyran-2-one (15): $0.235 \mathrm{~g}(76 \%)$ of white solid; $\mathrm{mp} 83-88^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ d $7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 7.37$ (dd, $J=8.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}$, 7.27 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ', 6.22 (s, 0.5 H), 6.21 ($\mathrm{s}, 0.5 \mathrm{H}$), 4.04 (d, $J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.98 (d, $J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), $2.86-2.80$ ($\mathrm{m}, 1 \mathrm{H}$), 2.75-2.72 (m, 1 H), $2.21-2.15$ (m, 1 H), $1.99-1.89$ ($\mathrm{m}, 1 \mathrm{H}$), $1.77-1.47$ (m, 8 H), 1.37-1.26 (m, 2 H i, 1.21-1.11 $(\mathrm{m}, 3 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 6 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.60$ $(\mathrm{m}, 2 \mathrm{H}), 0.29-0.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.7$, $165.6,163.8,162.5,162.4,141.1,129.3,129.2,128.0,127.9$, $127.5,127.4,112.2,106.0,105.8,43.8,43.7,39.4,39.3,37.4$, $35.9,35.8,30.5,30.4,29.2,29.1,28.2,28.1,27.4,25.8,23.2$, $22.7,22.6,13.3,13.2,5.1,4.7,3.8 \mathrm{ppm}$; IR (mineral oil) 3145 , 3076, 3060, 3024, 1658, 1632, $1546 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 394$ (M^{+}). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.

3-(Cyclopropylphenylmethyl)-4-hydroxy-10-(tetrahy-dropyran-2-ylmethyl)-5,6,7,8,9,10-hexahydrocycloocta[b]-pyran-2-one (16): $0.41 \mathrm{~g}\left(13 \%\right.$) of white solid; $\mathrm{mp} 88-93^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $7.3(\mathrm{dd}, J=7.3$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 0.5 \mathrm{H}), 6.19(\mathrm{~s}$, $0.5 \mathrm{H}), 4.04-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.12$ (m, $1 \mathrm{H}), 2.70-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1$ H), $1.80-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 4$ $\mathrm{H}), 0.74-0.73(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.25(\mathrm{~m}, 1$ H' ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ ' $\delta 165.7,165.6,163.9,162.6,162.5$, $141.1,129.3,129.2,128.1,128.0,127.4,111.7,111.6,106.0$, $105.9,74.9,68.5,43.8,43.7,37.7,34.9,34.0,32.3,30.4,27.3$, $27.2,26.2,25.7,23.6,23.0,13.3,13.1,5.1,4.8,3.8 \mathrm{ppm}$; MS (EI) $m / z 422\left(\mathrm{M}^{+}\right)$. Anal. ($\mathrm{C}_{2}, \mathrm{H}_{34} \mathrm{O}_{4}, \mathrm{C}, \mathrm{H}$.

3-(Cyclopropylphenylmethyl)-6,7,8,9-tetrahydro-4-hy-droxy-9-(methoxymethyl)cyclohepta[b]pyran-2(5H)one (18): $0.075 \mathrm{~g}(24 \%)$ of white solid; $\mathrm{mp} 69-71^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$.NMR (CDCl_{3} ' $\delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29$ (m, 1 H), 6.25 (br s, 1 H), 3.95 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.82-3.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.07(\mathrm{~m}$, $1 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 2$ $\mathrm{H}), 1.73-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 1$ H), $0.77-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.57(\mathrm{~m}, 2 \mathrm{H}), 0.31-0.26(\mathrm{~m}, 1$ H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.0,163.7,162.9,140.8,129.1$, $128.0,127.4,113.4,106.0,71.7,58.8,43.8,43.7,28.3,28.1,26.8$, $25.9,25.8,21.0,20.9,13.0,4.9,4.0,3.9 \mathrm{ppm}$; IR (mineral oil) 3144, 3075, 3060, 3024, 1657, 1544, $1495 \mathrm{~cm}^{-1}$; MS (EI) m / z $354\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.

3 -(Cyclopropylphenylmethyl)-6,7,8,9-tetrahydro-4-hy-droxy-9-(methoxyethyl)cyclohepta[b]pyran-2(5H)-one (19): $0.098 \mathrm{~g}(31 \%)$ of white solid; $\mathrm{mp} 58-60^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=7.2,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (br s, 1 H$), 3.96$ (d, $J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.46 (dd, $J=5.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3.33$ ($\mathrm{s}, 3 \mathrm{H}$, 2.99$2.96(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.50(\mathrm{~m}, 7 \mathrm{H}), 1.34-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.64-$ $0.57(\mathrm{~m}, 2 \mathrm{H}), 0.31-0.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $165.1,163.9,140.9,129.2,128.0,127.9,127.4,112.7,105.7$, $70.7,70.6,58.6,43.8,40.4,30.7,29.5,29.4,27.3,27.1,26.1$, 20.9, 20.8, 13.0, 4.9, 3.9 ppm ; IR (mineral oill 3132, 3076, 3060 , 3024, 1656, 1543, $1495 \mathrm{~cm}^{-1} ;$ MS (EI) $m / z 368$ (M-). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4}\right.$) C, H .

9-(Cyclopropylmethyl)-3-(cyclopropylphenylmethyl)-4-hydroxy-6,7,8,9-tetrahydro- 5 H -cyclohepta [b]pyran-2one (20): $0.087 \mathrm{~g}(58 \%)$ of white solid; $\mathrm{mp} 77-83^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=7.5,7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.29 (dd, $J=7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $6.21-6.20(\mathrm{~m}, 1 \mathrm{H})$ $4.00-3.96(\mathrm{~m}, 1 \mathrm{H}, 2.94-2.90(\mathrm{~m}, 1 \mathrm{H}, 2.60-2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.44-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.37-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.71(\mathrm{~m}, 2 \mathrm{H}), 0.65-0.53(\mathrm{~m}, 2 \mathrm{H})$, $0.52-0.38(\mathrm{~m}, 2 \mathrm{H}, 0.32-0.24(\mathrm{~m}, 1 \mathrm{H}), 0.13-0.07(\mathrm{~m}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$) $\delta 165.7,165.3,164.0,140.9,129.2$, $127.9,127.4,112.4,105.6,44.5,43.7,35.4,28.7,28.6,26.6,26.5$, $26.3,20.7,13.0,9.2,4.9,4.1,3.8,3.7 \mathrm{ppm}$; IR (mineral oill 3143 , 3076, 3062, 3024, 1654, 1628, $1541 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 364$ $\left(\mathrm{M}^{+}\right.$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.

3 (R or S)-(Cyclopropylphenylmethyl)-4-hydroxy-10(R and S)-propyl-5,6,7,8,9,10-hexahydrocycloocta $[b]$ pyran-

2-one (11a). (T)-3-(Cyclopropylphenylmethyl)-5,6,7,8,9,10-hexahydro-4-hydroxy- 2 H -cycloocta[b]pyran-2-one ${ }^{5}$ was alkylated using iodopropane as described in the general procedure above: 'H NMR (CDCl_{3} ' $\delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=$ $7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 0.5 \mathrm{H}), 6.16(\mathrm{~s}$, $0.5 \mathrm{H}), 4.05$ (d, $J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), $2.93-2.90(\mathrm{~m}, 1 \mathrm{H}, 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H})$, $2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 6 \mathrm{H})$, $1.22-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 3 \mathrm{H}), 0.77-0.73(\mathrm{~m}, 1 \mathrm{H}$, $0.63-0.58\left(\mathrm{~m}, 2 \mathrm{H}, 0.29-0.26\left(\mathrm{~m}, 1 \mathrm{H}^{\prime} \mathrm{ppm}\right.\right.$; MS (EI) miz 366 (M^{-}); HRMS caled for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} 366.2195$, found 366.2200 .

Separation of 11a into Component Diastereomers 11b and 11c. Separation was carried out using a $2.1 \times 25 \mathrm{~cm}$ Chiralcel OD column as the chiral stationary phase and 1.5% ethanol and 0.2% acetic acid in hexane (v/y) as the mobile phase ($16 \mathrm{~mL} / \mathrm{min}$). A LV detector at 295 nm was used to monitor the separation of 2 mg of racemate/run.

3 (R or S)-(Cyclopropylphenylmethyl)-4-hydroxy-10(R or S)-propyl-5,6,7,8,9,10-hexahydrocycloocta $[b]$ pyran-2one (11b): $t_{\mathrm{R}}=16 \mathrm{~min}$.

3 (\boldsymbol{R} or \boldsymbol{S})-(Cyclopropylphenylmethyl)-4-hydroxy-10(R or S)-propyl-5,6,7,8,9,10-hexahydrocycloocta[b] pyran-2one (11c): $t_{\mathrm{R}}=19 \mathrm{~min}$.

3(R or S)-(Cyclopropylphenylmethyl)-4-hydroxy-10(R and S)-propyl-5,6,7,8,9,10-hexahydrocycloocta $[b]$ pyran2 -one (11d). (-i-3-(Cyclopropylphenylmethyl)-5,6,7,8,9,10-hexahydro-4-hydroxy- 2 H -cycloocta[b]pyran-2-one ${ }^{5}$ was alkylated using iodopropane as described in the general procedure above: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=$ $7.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 0.5 \mathrm{H}), 6.16(\mathrm{~s}$, $0.5 \mathrm{H}), 4.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}$, $2.96-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H})$, $2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 6 \mathrm{H})$, $1.19-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.86(\mathrm{~m}, 3 \mathrm{H}), 0.78-0.69(\mathrm{~m}, 1 \mathrm{H})$, $0.63-0.58(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$; MS (EI) m / z $366\left(\mathrm{M}^{+}\right)$; HRMS caled for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} 366.2195$, found 366.2200 .

Separation of 11 dinto Component Diasteromers 11 e and 11f. Separation was carried out using a $2.1 \times 25 \mathrm{~cm}$ Chiralcel OD column as the chiral stationary phase and 4.5% ethanol and 0.2% acetic acid in hexane (v / y) as the mobile phase ($16 \mathrm{~mL} / \mathrm{min}$). A UV detector at 295 nm was used to monitor the separation of 2 mg of racemate/run.
3 (R or S)-(Cyclopropylphenylmethyl)-4-hydroxy-10(R or S)-propyl-5,6,7,8,9,10-hexahydrocycloocta $[b]$ pyran-2one (11e): $t_{R}=60 \mathrm{~min}$.

3 (R or S)-(Cyclopropylphenylmethyl)-4-hydroxy-10(R or S)-propyl-5,6,7,8,9,10-hexahydrocycloocta[b]pyran-2one (11f): $t_{R}=70 \mathrm{~min}$.
[3-[Cyclopropyl ($5,6,7,8,9,10$-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]carbamic Acid, Phenylmethyl Ester (23). A $500-\mathrm{mL}$, three-necked, round-bottomed flask with a Dean-Stark trap and nitrogen inlet was charged with p-toluenesulfonic acid (0.635 g) and 240 mL of toluene and warmed to reflux to remove ca. 40 mL of water. The solution was allowed to cool to room temperature, and cyclooctylpyranone $21^{27}(2.54 \mathrm{~g}, 13.1 \mathrm{mmol})$ and alcohol $2^{8}{ }^{8}(3.83 \mathrm{~g}, 12.9 \mathrm{mmol})$ were added. The resulting mixture was then stirred at room temperature for ca. 16 h . The reaction mixture was diluted with 700 mL of EtOAc and washed with three $75-\mathrm{mL}$ portions of water, two $75-\mathrm{mL}$ portions of saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, and another $75-\mathrm{mL}$ portion of water. The organic layer was then concentrated in vacuo to give 6.5 g of a foam. Column chromatography on 150 g of silica gel (elution with $30-50 \%$ ethyl acetate/hexane) yielded $3.81 \mathrm{~g}(62 \%)$ of 23 as a white solid: $\mathrm{mp} 113-115^{\circ} \mathrm{C}$ dec; ' H NMR (CDCl_{3}) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.95$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.43(\mathrm{~m}, 2 \mathrm{H})$, $1.76-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.42(\mathrm{~m}, 7 \mathrm{H}), 0.73-0.72(\mathrm{~m}, 1 \mathrm{H})$, $0.63-0.55(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}{ }^{\prime}\right.$ $\delta 165.6,164.0,161.3,153.0,142.2,138.5,135.8,129.9,128.5$, $128.3,128.2,122.9,117.9,117.6,110.7,106.0,67.0,43.7,30.7$, $29.1,28.8,26.2,25.8,22.1,13.0,4.9,3.8 \mathrm{ppm}$; IR (mineral oil) 3383, 3304, 3211, 3147, 3075, 3032, 1734, 1698, 1665, 1666, 1633, 1610, 1595, 1553, 1491, $1222 \mathrm{~cm}^{-1}$; MS (EI) m/z 473 (M+1; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{5} 473.2201$, found 473.2202.

3-[(3-Aminophenyl)cyclopropylmethyl]-5,6,7,8,9,10-hexahydro-4-hydroxy-2H-cycloocta[b]pyran-2-one (24). In a $100-\mathrm{mL}$, three-necked, round-bottomed flask with a reflux condenser and nitrogen inlet, 10% palladium on carbon (1.0 g ! was added to a mixture of $231.95 \mathrm{~g}, 4.12 \mathrm{mmol}$ in cyclohexene 50 mL , and the mixture was refluxed for 4 h . The mixture was then filtered through Celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated to give $1.25 \mathrm{~g} / 90 \%$) of 24 as a white solid. An analytical sample was purified by column chromatography on silica gel (elution with $30-75 \%$ ethyl acetate k hexanel: $\mathrm{mp} 75-79^{\circ} \mathrm{C}$; 'H NMR CDCl_{3} ' $) 7.16$ dd, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (s, 1 H) $6.63(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$, 5.67 (s. 1 H), 3.88 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2.63-2.59$ (m, 2 H $, 2.48-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.97$ (m, $1 \mathrm{H}, 1.79-1.71$ ($\mathrm{m}, 2 \mathrm{H}$), $1.63-1.41 \mathrm{~m}, 5 \mathrm{Hi}, 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}, 0.74-0.65$ $\left(\mathrm{m}, 1 \mathrm{H}, 0.61-0.53\left(\mathrm{~m}, 2 \mathrm{H}, 0.28-0.22(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppin} ;{ }^{12} \mathrm{C}\right.\right.$ NMR ($\mathrm{CDCl}_{3 .}$)) $165.8,164.2,161.1,142.8,130.2,117.7 .117 .6$, $114.7,114.5,110.9 .106 .2,43.5,30.6,29.1,28.8 .26 .2,25.8,22.1$, 12.8, 4.7, 3.7 ppm ; IR mineral oil 3359, 3209, 3074, 1660, 1619, 1605, 1590. 1551, 1491, 1447, 1404 cm '; MS (EI $\cdot m / z$ 339 (M^{-}); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{55} \mathrm{NO}_{3} 339.1834$, found 339.1845.
N-[3-[Cyclopropyl($5,6,7,8,9,10$-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]- N^{\prime}-ethylurea (25). In a flame-dried, $10-\mathrm{mL}$, two-necked flask under nitrogen, ethyl isocyanate $10.021 \mathrm{~g}, 0.29 \mathrm{mmol}$ ' was added dropwise to a solution of $\mathbf{2 4}(0.100 \mathrm{~g}, 0.29 \mathrm{nmol})$ in 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred at room temperature for 24 h , and then the white precipitate was collected by filtration to yield 0.075 g (63% of $\mathbf{2 5}$. An analytical sample was recrystallized from CHCl_{3} : mp $215^{\circ} \mathrm{C}$ dec: H NMR (CDCl_{3} and $\mathrm{CD}_{3} \mathrm{ODi}$) $7.40 \mathrm{r}, 1 \mathrm{H}, 7.18 \mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $7.10(\mathrm{~m}, 1 \mathrm{H}) 3.48 \mathrm{~d}, J=9.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{q} . J=7.2 \mathrm{~Hz}$, $2 \mathrm{Hi}, 2.62(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2.53 \mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{I} .1 .74$ $(\mathrm{m}, 3 \mathrm{Hi}, 1.63(\mathrm{~m} .2 \mathrm{H}, 1.47(\mathrm{~m}, 4 \mathrm{H}, 1.15(\mathrm{t} . . J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. $0.72\left(\mathrm{~m}, 1 \mathrm{H}, 0.52(\mathrm{~m}, 1 \mathrm{H}, 0.29 \mathrm{~m}, 2 \mathrm{H} / \mathrm{ppm})^{19} \mathrm{C}\right.$ NMR (DMSO- d_{6}) o 163.9, 163.4, 160.2, 155.2, 144.3, 140.1, 128.0. 120.3. 116.9, 115.2, 110.1. 106.1, 44.7, 34.0, 30.3, 29.2, 28.7. $26.0,25.4,21.9,15.6,12.6,6.6,3.8 \mathrm{ppm} ;$ IR mineral oil 1682. 1660, 1631, 1595, 1562, 1535. 1448. $1408 \mathrm{~cm}^{-9}:$ HRMS (FAB. $\mathrm{M}-1 \mathrm{i}$ calculated 411.2284, found 411.2293. Antal. $\mathrm{C}_{2} \mathrm{H}_{3}, .-$ $\mathrm{N}, \mathrm{O}: \mathrm{C}, \mathrm{H} . \mathrm{N}$.
N-[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyllphenyl]-N. phenylurea (26) was prepared as described above for $\mathbf{2 5}$: $0.197 \mathrm{~g} 174 \%$) of white solid; mp 214-215 ${ }^{\circ} \mathrm{C}$: ' H NMR ($\mathrm{CDCl}_{\text {; }}$ and $\mathrm{CD}_{3} \mathrm{OD}$ ı。 $7.43 \mathrm{~m}, 3 \mathrm{H}, 7.31-7.13 \mathrm{~m}, 5 \mathrm{H}, 7.03 \mathrm{it}, . J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}, 3.47$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{l}, 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}$, $2 \mathrm{H}, 1.75(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 4 \mathrm{H}), 0.73(\mathrm{~m} .1 \mathrm{H})$, $0.52\left(\mathrm{~m}, 1 \mathrm{H}, 0.29 \mathrm{~mm}, 2 \mathrm{H}\right.$ ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO-d l_{1}^{\prime}) 163.9. $163.3,160.2,152.5,144.6,139.8,139.3,128.8,128.1,121.8$. $121.2,118.1,117.4,115.6,110.1,106.0,44.7,30.3 .29 .2,28.7$, $26.0,25.5,22.0,12.6,6.6,3.8 \mathrm{ppm}$; IR (mineral oil $\operatorname{I} 1660.1630$. 1596, 1562, 1548, 1446, $1409 \mathrm{~cm}^{\prime \prime}$: MS EII m/z 459 (M) Anal. $\mathrm{C}_{2} \mathrm{~S} \mathrm{H}_{\mathrm{N}}^{\mathrm{N}} \mathrm{N}_{2} \mathrm{O}, \mathrm{C}, \mathrm{H}, \mathrm{N}$.
[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]ethyl Ester of Carbamic Acid (27). In a flame-dried. $10-\mathrm{mL}$. twonecked flask under nitrogen at $0^{\circ} \mathrm{C}$, ethyl chloroformate 10.062 g. 0.58 mmol was added dropwise to $24(0.200 \mathrm{~g}, 0.58111 \mathrm{~mol} 1$ in 2.3 mL of pyridine. The resulting mixture was stirred at () "C for 1 h , allowed to warm to room temperature, and then concentrated in tacur). The residue was dissolved in 5 mL of toluene and then concentrated in cacuo three times to produce 0.329 g of crude material. Column chromatography on ca. 25 g of silica gel (elution with 30% EtOAchexane! yielded 0.186 $\mathrm{g}(78 \%)$ of 27 as a white solid: $\mathrm{mp} 162^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $)$ $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H} .7 .28(\mathrm{~m} .1 \mathrm{H}!7.15 \mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6.71 \mathrm{~s}, 1 \mathrm{H}), 6.50$ (br s. $1 \mathrm{H} \mathrm{l}, 4.21(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, 3.91 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2.61 \mathrm{t}, J=6.2 \mathrm{~Hz} .2 \mathrm{H}$, $2.44(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.35(\mathrm{~m}, 7 \mathrm{H}, 1.30 \mathrm{t} . J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, 0.74(\mathrm{~m}, 1 \mathrm{H}), 0.58 \mathrm{~m}, 2 \mathrm{H}, 0.27 \mathrm{~m} .1 \mathrm{H} \mid \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR CDCl_{3} ') 165.6, 164.1, 161.2, 153.4, 142.3. 138.6. 129.7, 122.7. 117.9, 117.4. 110.7. 106.0. 61.1. 43.8, 30.6. 29.1, $28.8,26.1,25.7,22.0,14.4,13.0 .4 .9 .3 .8 \mathrm{ppm}$: IR mineral oil. $3293,3258,1679,1647,1614,1598,1558.1447,1440,1405$

[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]phenyl ester of carbamic acid (28) was prepared as described above for 27: 0.161 g (60°) of white solid; $\mathrm{mp} 208-209^{\circ} \mathrm{C}$; 'H NMR
 'brs. $1 \mathrm{H}, 3.93$ d d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, $2.60 \mathrm{~m} \mathrm{~m} .2 \mathrm{H}, 2.44$ (m. 2 Hı. 1.73 (s, $2 \mathrm{H} .1 .58-1.41$ (m. 7 H ।. $0.78-0.69 \mathrm{~mm}, 1 \mathrm{H}), 0.64-$ $0.52(\mathrm{~m}, 2 \mathrm{H}, 0.31-0.24 \mathrm{~s} .1 \mathrm{H}) \mathrm{ppm}: \mathrm{C}$ NMR (CDCl 1) $165.6,164.1,161.3 .151 .5 .150 .4,142.4,138.0,129.8,129.3$. $125.6,123.3$. 121.5. 118.1, 117.5, 110.7. 105.9. 43.8, 30.6, 29.1, $28.7,26.1,25.7,22.1,13.0,5.0,3.8 \mathrm{ppm}$ IR mineral oil! 3325. $1742,1668,1654,1614,1596,1559,1538,1492,1439 \mathrm{~cm}^{-1}$ MS EI $m / z 459\left(\mathrm{M}^{-}\right.$!. Anal. ($\left.\mathrm{C}_{2 \rightarrow} \mathrm{H}_{24} \mathrm{NO}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Representative Procedure for the Preparation of 2930, 32-40, and 42. N-[3-[Cyclopropyl(5,6,7,8,9,10-hexahy-dro-4-hydroxy-2-oxo-2H-cycloocta[b] pyran-3-yl)methyl]phenyllbutanamide (29). In a flame-dried, $25-\mathrm{mL}$. twonecked flask under nitrogen, bis! 2-ox 0-3-oxazolidinyl) phosphinic chloride $10.150 \mathrm{~g}, 0.59 \mathrm{mmol}$ was added to a mixture of 24 10.200 g .0 .59 mmol , triethylamine $0.119 \mathrm{~g}, 1.2 \mathrm{mmol}$, and butyric acid ($0.052 \mathrm{~g}, 0.59 \mathrm{mmol}$) in 5.8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stiryed for 24 h at room temperature and then diluted with 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and 10 drops 4 N HCl . The aqueous layer was separated. and the organic layer was washed witl an additional two $5-\mathrm{mL}$ portions of water and 10 mL of brine. The organic layer was then washed with $\mathrm{H}_{3} \mathrm{O}$, dried over MgSO_{1}, filtered, and concentrated in cacuo. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielded $0.148 \mathrm{~g} 161 \%$ of 31 as a white solid: mp 222-224 ${ }^{\circ}{ }^{\circ} ;{ }^{\prime} \mathrm{H}$ NMR $/ \mathrm{CDCl}_{3}$ and $\mathrm{CD}_{3} \mathrm{OD}$! δ 7.52 (s. $1 \mathrm{H}, 7.41 \mathrm{~d}, J=7.4 \mathrm{~Hz} .1 \mathrm{H}!7.22 \mathrm{~m}, 2 \mathrm{H}!3.56!\mathrm{d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H} \stackrel{2.62}{ } \mathrm{t}, J=6.1 \mathrm{~Hz} .2 \mathrm{H} \mid, 2.52 \mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}, 2.33 \mathrm{it}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 1.78-1.44 \mathrm{~m}, 11 \mathrm{H} .1 .00 \mathrm{it}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 0.73(\mathrm{n}, 1 \mathrm{H}), 0.54 \mathrm{in}, 1 \mathrm{H}, 0.35(\mathrm{~m}, 1 \mathrm{H})$. $0.27 \mathrm{im}, 1 \mathrm{H}$! ppm; ${ }^{19} \mathrm{C}$ NMR (DMSO- d_{6} ' $)$ 171.3. $164.7,163.9$. 160.1. 143.7. 138.0. 127.8. 122.5, 118.7. 117.4, 110.1, 106.0. 44.4, 38.6. 30.4, 28.8. 28.3. 25.8, 25.2. 21.8, 18.5. 13.3. 12.2, $5.8,3.3 \mathrm{ppm}$: IR mineral oil; $3103,1677,1654.1616,1595$. $1561,1448.1405 \mathrm{~cm}^{-1}$: MS 'EI $m / z 409^{\prime} \mathrm{M}^{-1}$. Anal. $\left.\mathrm{C}_{2} \mathrm{H}_{3}\right)^{-}$ NO, 1 C. H. N.
N-[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]benzacetamide (30): 0.144 g (53 \%) of white solid; mp 211-212 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR CDCl_{1} and $\mathrm{CD}, \mathrm{OD} \cdot 07.53 \mathrm{~s} .1 \mathrm{H}, 7.37 \mathrm{~m}, 5$ Hi, $7.30(\mathrm{ml}, 1 \mathrm{H}, 7.20(\mathrm{~d} . J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, 3.67$ (s. 2 H), 3.43 $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 2.61 \mathrm{t} . J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, 2.53 \cdot \mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}, 1.751 \mathrm{~m} .3 \mathrm{H}, 1.62(\mathrm{~m} .2 \mathrm{H}, 1.45 \mathrm{~m}, 4 \mathrm{H}, 0.71 \mathrm{~m}$. $1 \mathrm{H}, 0.51 \mathrm{~m}, 1 \mathrm{H}$), $0.28\left(\mathrm{~m} .2 \mathrm{H} \mathrm{ppm}:{ }^{19} \mathrm{C}\right.$ NMR (DMSO- d_{6})万 $169.0,163.9,163.4,160.3,144.5,138.8$. 136.2, 129.2. 128.3. 128.0, 126.5. 122.5. 118.4. 116.6, 110.2, 106.0, 44.6, 43.4.30.3. $29.2,28.7,26.0,25.4,21.9 .12 .5,6.6,3.8 \mathrm{ppm}$ IR mineral oil! $3104,1676,1654,1640,1618,1594,1560,1404,1216 \mathrm{~cm}$ MS EI $m / z 45 \bar{i}, \mathrm{M}$. Anal. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}, 1 \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-ylimethyl]phenyl]benzeneethanethioamide (31). In a flame-dried flask under nitrogen. 1.9 mL toluene was added to a mixture of $30<0.200$ g. 0.437 mmol and Lawesson's reagent $10.177 \mathrm{~g}, 0.437 \mathrm{mmol}$ i. The reaction mixture was brought to reflux for 1.5 h and then cooled in an ice bath to induce precipitation. The solid was collected by filtration and dried under vacuum at $60{ }^{\circ} \mathrm{C}$ to afford $0.111 \mathrm{~g} \cdot 54 \%$ of 31 . An analytical sample was obtained using preparative thin layer chromatography (elution with 15\% $\mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CHCl}_{1}$): $\mathrm{mp} 163{ }^{5} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$) 1) 8.67 (br s, $1 \mathrm{H}, 7.89$!brs. $1 \mathrm{H}, 7.44-7.29 \mathrm{~m}, 8 \mathrm{H} ; 6.54 \mathrm{fbr} \mathrm{s}, 1 \mathrm{H}$, $4.26 \mathrm{is}, 2 \mathrm{H}, 3.93 \mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2.60 \mathrm{t}, J=6.1 \mathrm{~Hz}, 2$ $\mathrm{H}, 2.47 \mathrm{it}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 1.72 \mathrm{~m}, 2 \mathrm{H}, 1.59-1.34 \mathrm{~m}, 7$ $\mathrm{H}), 0.71 \mathrm{~m}, 1 \mathrm{H}, 0.64-0.50 \mathrm{~m}, 2 \mathrm{H}, 0.25 \mathrm{~m} .1 \mathrm{H}$ ppm; ${ }^{15} \mathrm{C}$ NMR ($\mathrm{CDCl}_{31} 1$ 1) 201.3. 165.6. 164.2, 161.3. 141.9, 138.8, 134.8, 129.5. 129.32. 129.28, 128.0. 126.5. 123.3, 122.0. 110.8. 105.7. $54.8,43.7 .30 .7,29.1,28.8,26.1,25.8,22.1,13.0,4.9,3.8 \mathrm{ppm}$; IR (mineral oil $1660,1646,1593,1559,1552,1437.1393 \mathrm{~cm}$

N-[3-[Cyclopropyl $(5,6,7,8,9,10$-hexahydro-4-hydroxy-2-oxo-2H-cycloocta [b]pyran-3-yl)methyl]phenyl]benzamide (32): $0.136 \mathrm{~g} / 21^{6}$! of solid; $\mathrm{mp} 217^{\circ} \mathrm{C}:{ }^{\circ} \mathrm{H}=\mathrm{MR} / \mathrm{CDCl}_{\text {s }}$ and CD:OD: $7.93, \mathrm{~d}, . J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 7.68 \mathrm{hr}: 1 \mathrm{H}, 7.54$
($\mathrm{m}, 4 \mathrm{H}$) $.7 .29(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2.58(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 3 \mathrm{H})$, $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{~m}, 1 \mathrm{H}), 0.54(\mathrm{~m}, 1$ H), $0.32(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}\right) \delta$ 165.5, 164.2 , $163.4,160.2,144.5,138.8,135.2,131.5,128.4,127.7,122.9$, $119.8,117.9,110.3,106.0,44.7,30.4,29.2,28.7,26.0,25.5,21.9$, 12.6. $6.7,3.8 \mathrm{ppm}$; IR (mineral oil) $1679,1640,1614,1595$, 1578, 1551. 1432, $1404 \mathrm{~cm}^{-1}$; MS (EI) $m / z 443\left(\mathrm{M}^{-}\right.$. Anal. ${ }^{1} \mathrm{C}_{2 n} \mathrm{H}_{29} \mathrm{CO}_{1}, 1 \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]-4-fluorobenzamide (33): 0.172 g ($64 / \mathrm{c}$) of white solid; mp 239 $240^{\circ} \mathrm{C}$; ${ }^{\mathrm{H}} \mathrm{MMR} \mathrm{CDCl}_{3}$ and $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.96$ (dd, $J=5.3,8.8$ $\mathrm{Hz}, 2 \mathrm{H}$, $7.63 \mathrm{~s}, 1 \mathrm{H}$). $7.55 \mathrm{dd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, 7.29 (t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$) 7.24 (s. 1 H), 7.19 (s, 1 H$), 7.17$ (t, $J=8.7 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.49(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}$, $. J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .1 .75(\mathrm{~m}, 3 \mathrm{H}, 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 4 \mathrm{H})$, $0.75 \mathrm{~m}, 1 \mathrm{H}, 0.53 \mathrm{~m}, 1 \mathrm{H}, 0.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR -DMSO!d 165.7. 164.4, 164.1, 163.4, 160.2, 144.5, 138.6, 131.6, $130.5,130.4,127.8,123.0,119.8,118.0,115.4,115.2,110.2$, $106.0,44.7 .30 .4,29.2 .28 .8,26.0,25.4,21.9,12.6,6.6,3.8 \mathrm{ppm}$; IR (mineral oil $1675.1640 .1616,1603,1589,1554,1508,1445$, 1436. $1402 \mathrm{~cm}^{-1}$; MS 'EI $m / z 461\left(\mathrm{M}^{-1}\right)$. Anal. ($\mathrm{C}_{28} \mathrm{H}_{2 \times} \mathrm{NO}_{4} \mathrm{~F}$) C, H. N.
N-[3-[Cyclopropyl(5,6,7,8.9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]-3-phenyl-2-propenamide (34): $0.093 \mathrm{~g}(33 \%$) of white solid; mp 253 $254{ }^{\circ} \mathrm{C} ; \mathrm{H}^{\prime} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ and $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.64(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, 1 H ! 7.57 (s, 1 H$), 7.49(\mathrm{~m} .3 \mathrm{H}) .7 .31(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H})$, $6.60 \mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, 3.49 \mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46^{\circ}$ t. $\left.. J=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.56$ - m. 2 H). 1.40 (m, $4 \mathrm{H}, 0.68(\mathrm{~m}, 1 \mathrm{H}), 0.48(\mathrm{~m}, 1 \mathrm{H}), 0.25(\mathrm{~m}$, $2 \mathrm{H}!\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6} o $164.1,163.4,160.2,144.7$, 139.9. 138.9. 134.9, 129.8, 129.1, 128.1, 127.7, 122.7, 122.6, $118.5,116.8,110.2 .105 .9,44.6,30.4,29.2,28.7,26.0,25.5,21.9$, 12.6, 6.6.3.8 ppm; IR imineral oil) 1680, 1661, 1629, 1611, 1591. 1560, 1434. 1401. $1216 \mathrm{~cm}^{-1}$; MS (EI) m/z 469 (M^{-}. Anal. $\mathrm{C}_{5}, \mathrm{H}_{31}, \mathrm{NO}_{+}$, $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
[2-[[3-[Cyclopropyl $(5,6,7,8,9,10-$ hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b] pyran-3-yl)methyl]phenyl]amino]-2-oxoethyl]carbamic acid, 1,1-dimethylethyl ester (35): $0.115 \mathrm{~g} / 33 \mathrm{c}, \mathrm{of}$ off-white solid; mp $114-124^{\circ} \mathrm{C}$ dec; ${ }^{\prime} \mathrm{H}$ NMR ${ }^{(} \mathrm{CDCl}_{3}$ ') 8.30 (brs. $1 \mathrm{H}, 7.55$ (s. $1 \mathrm{Hi}, 7.49$ (d, $J=8.0 \mathrm{~Hz}, 1$ H. $7.31--7.21 \mathrm{~m}, 2 \mathrm{H}, 5.30$ br $5,1 \mathrm{H}, 3.90-3.86(\mathrm{~m}, 3 \mathrm{H})$, $2.60 \mathrm{~m}, 2 \mathrm{H}, 2.46 \mathrm{~m} .2 \mathrm{H}, 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m} .7$ $\mathrm{H}, 1.47$'s. $9 \mathrm{H}, 0.75 \mathrm{~m}, 1 \mathrm{H}, 0.60-0.51(\mathrm{~m}, 2 \mathrm{H}), 0.28(\mathrm{~m}, 1$ H' ppm; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{5!}$! $) 167.8 .165 .7,164.1,161.3,156.2$, 142.4. 137.9. 129.6, 123.8. 119.3. 118.7, 110.7, 106.0, 45.4, 43.9, $30.7,30.2,29.1,28.8,28.2$. 26.2, 25.7,22.1, 12.9, 5.0, 3.8 ppm ; IR (mineral oil 3299 , 1670. 1661, 1612, 1594, 1557, 1516, 1489 , 1445. 1405, $1394 \mathrm{~cm}^{-1}$; MS (EI $m!z 497$ (MT). Anal. ${ }^{1} \mathrm{C}_{2}, \mathrm{H}_{3 ; 5} \mathrm{~N}_{2} \mathrm{O}_{[9}!\mathrm{C}, \mathrm{H}, \mathrm{N}$.
[2-[[3-[Cyclopropyl (5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3yl)methyl]phenyl]amino]. 3-oxopropyllcarbamic acid, 1,1-dimethylethyl ester (36): $0.055 \mathrm{~g} 473^{r} \%$ of off-white solid; mp $197-199^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{\mathrm{s} \text { ! }}$) $8.01 \mathrm{~s}, 1 \mathrm{H} .7 .60 \mathrm{~s}, 1 \mathrm{H}$, $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31 \mathrm{dd}, J=8.0 .7 .7 \mathrm{~Hz}, 1 \mathrm{H}, 7.20 \mathrm{~d} . J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 3.90$ (d, $J=8.6 \mathrm{~Hz} .1 \mathrm{H}) .3 .46 \mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, 2.63-2.52(\mathrm{~m}$, $4 \mathrm{H}) 2.47(\mathrm{~m}, 2 \mathrm{H}: 1.73(\mathrm{~m} .2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 7 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H}, 0.75-0.73 \mathrm{~m}, 1 \mathrm{H}), 0.63-0.51 \mathrm{~m}, 2 \mathrm{H}), 0.29-0.25(\mathrm{~m}, 1$ H'ppm: ${ }^{3} \mathrm{C}$ NMR $\mathrm{CDCl}:$, DMSO! $力 169.0,163.8,163.3,159.4$, 154.9. 143.5. 137.4, 127.0, 122.0, 118.1, 116.4, 109.5, 105.4. 77.6. 44.0, 39.0. 35.8, 29.9, 28.3. 27.8, 27.4, 25.2, 24.6, 21.3, 11.6. 5.6. 2.9 ppm ; IR (mineral oil $3445,3416,3285.3259$, 3198. 3155, 3100, 3086, 3041, 1714, 1679, 1656, 1641. 1614, 1592. 1561. 1437. $1398 \mathrm{cmi}^{-2} ;$ MS (EI $m / z 510\left(\mathrm{M}^{-1}\right.$. Anal.

[2-[[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-ylimethyl]phenyl]amino]-4-oxobutyl]carbamic acid, 1,1 -dimethylethyl ester (37): 0.192 g ($52^{\%}$) of off-white solid; mp $188-191^{\circ} \mathrm{C}$ dec; ${ }^{\text {'H }} \mathrm{H}$ NMR ($\mathrm{CDCl}_{\mathrm{s}}$) $) 8.87$ (brs. $1 \mathrm{H}, 7.76$ (s, 1 H), $7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ $\left.\mathrm{H}), 7.30 \mathrm{ddd}^{2} . J=8.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.41 (brs, 1 H), $4.79 \mathrm{ibrs}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ t. $J=5.9 \mathrm{~Hz} .2 \mathrm{H} \cdot .2 .61 \mathrm{~m}, 2 \mathrm{H}, 2.45-2.36(\mathrm{~m}, 4 \mathrm{H}), 1.91-$
$1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 7 \mathrm{H}), 1.45 \mathrm{~s}$, $9 \mathrm{H}, 0.75(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.55(\mathrm{~m}, 2 \mathrm{H}), 0.30-0.25(\mathrm{~m}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$) $\delta 171.2,165.7,164.0,161.2,157.1$, $142.1,139.0,129.7,123.5,118.8,118.6,110.7,106.0,79.8,43.7$, $39.2,34.4,30.7,29.1,28.8,28.2,27.1,26.2,25.7,22.0,13.0$, $4.9,3.8 \mathrm{ppm}$; IR (mineral oil) $3357,3289,3257,3219,3201$, 3160, 3152, 3105, 3081, 3063, 3048, 3002, 1711, 1663, 1653, 1621, 1594, 1562, 1545, 1443, 1402, $1390 \mathrm{~cm}^{-1}$; MS (EI $/ \mathrm{m} / \mathrm{z}$ 525 (M-;; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{6} 525.2964$, found 525.2999 .
[2-[[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo- $2 H$-cycloocta[b]pyran-3-yl)methyl]phenyl]amino]1 -(\boldsymbol{S})-methyl-2-oxoethyl]carbamic acid, 1,1 -dimethylethyl ester (38): $0.288 \mathrm{~g}\left(77 \%\right.$) of off-white solid; $\mathrm{mp} 134-139{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.55$ (br s, $1 \mathrm{H} .7 .60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1$ H), 7.49 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$) $7.30-7.17$ ($\mathrm{m}, 2 \mathrm{H}$), 5.04 ($\mathrm{br} \mathrm{s}, 1$ H), $4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .2 .61(\mathrm{~m}, 2 \mathrm{H})$, $2.46(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m} .2 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 7 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~m}, 1 \mathrm{H}), 0.61-0.50(\mathrm{~m}, 2 \mathrm{H})$, $0.28-0.23(\mathrm{~m} .1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$) $170.8,165.6$, $164.1,161.3,142.2,129.7,129.6,123.8,123.7,119.0,118.7$, $110.7,106.0,50.7,43.8,30.7,29.1,28.8,28.2,26.2,25.8,25.7$. 22.1, 17.2, 12.9, 5.0, 3.8 ppm; IR (mineral oil! 3399, 3299, 3223 . $3153,3077,1669,1660,1612,1593,1557.1489,1446,1405$. $1393 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{FAB}) \mathrm{miz} 511\left(\mathrm{M}+\mathrm{H}^{-}\right.$. Anal. $\mathrm{C}_{2} 4 \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$) C, H, N.
[2-[[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3yl)methyl]phenyl]amino]-1(R)-methyl-2-oxoethyl]carbamic acid, 1,1-dimethylethyl ester (39): 0.058 g (33%) of white solid: $\mathrm{mp} 122-127^{\circ} \mathrm{C}$ dec; ${ }^{\prime} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .7 .60!\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}!$, $7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 2 \mathrm{H}, 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $4.31(\mathrm{brs}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.46$ $(\mathrm{m}, 2 \mathrm{Hi}, 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 7 \mathrm{H}) 1.45 \mathrm{is}, 9 \mathrm{Hi}, 1.42$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ i, $0.72(\mathrm{~m}, 1 \mathrm{Hi}, 0.62-0.53(\mathrm{~m}, 2 \mathrm{H}), 0.28-$ $0.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ o 170.8, 165.6, 164.1, $161.3,142.2,129.7,129.6,123.8,123.7,119.0,118.7,110.7$. 106.0, 50.7, 43.8. 30.7, 29.1, 28.8, 28.2, 26.2, 25.8, 25.7, 22.1, $17.2,12.9,5.0,3.8 \mathrm{ppm} ;$ IR (mineral oil $13399,3297.3255,3153$. 3077, 1671, 1611, 1593, 1557, 1488, 1446. 1404, $1393 \mathrm{~cm}^{-1}$; MS (EI) $m / z 510\left(\mathrm{M}^{-1}\right.$. Anal. ($\mathrm{C}_{29} \mathrm{H}_{3 \times 1} \mathrm{~N}_{2} \mathrm{O}_{6}$) C. H, N.

2-[[[]-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-ylimethyl]phenyl]amino]-carbonyll-1(S)-pyrrolidinecarboxylic acid, 1,1-dimethylethyl ester (40): $0.317 \mathrm{~g}(77 \%$) of off-white solid: mp 132$136{ }^{\circ} \mathrm{C}$ dec; ${ }^{\text {'H }} \mathrm{HMR}\left(\mathrm{CDCl}_{3}\right)$ o) $7.68-7.49 \mathrm{~m}, 2 \mathrm{H}, 7.29(\mathrm{~m}, 1$ H), 7.18 (m, 1 H) 6.38 (br s, 1 H), 4.45 (br s. 1 H), 3.92 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}, 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 10$ H), $1.48(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.54(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.24$ $(\mathrm{m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{1 / 2} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$) 164.0 . 161.2, 129.8, 123.7. 123.6, 123.5, 118.8, 118.7, 118.6. 118.5, 110.7. 106.1, 105.9, 80.9, 47.1, 43.7, 43.6, 30.6, 29.1, 28.8, 28.3, 26.2, 25.7, 24.4, $22.0,13.0,12.9,4.9,3.8 \mathrm{ppm}$; IR (mineral oil $3286,3211,3150$, 3077, 1701, 1668, 1611, 1593, 1557, 1488, 1479, 1445, 1437, $1404 \mathrm{~cm}^{-1}$; MS (EI) miz $536\left(\mathrm{M}^{-1}\right.$. Anal. ($\mathrm{C}_{31} \mathrm{H}_{1} \mathrm{Ni}_{2} \mathrm{O}_{6}$) C, H, N .
[2-[[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo-2H-cycloocta[b]pyran-3-yl)methyl]phenyl]amino]-$1(\boldsymbol{R})$-(1 H -imidazol-4-ylmethyl)-2-oxoethyl]carbamic acid, 1,1-dimethylethyl ester (42): $0.196 \mathrm{~g}(68 \%)$ of white solid; mp $175-179^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.90 \mathrm{~s}, 1 \mathrm{H}$) 7.59 (s , $1 \mathrm{H}, 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.98$ $(\mathrm{m} .2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}, 3.36 \mathrm{dd} . J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, $2.94-2.77(\mathrm{~m}, 2 \mathrm{H}, 1.85(\mathrm{~m}, 1 \mathrm{Hi}, 1.63 \mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2$ Hi, $1.36-1.27(\mathrm{~m}, 8 \mathrm{H}), 1.36$ (s, 9 H$), 0.66$ (mı. 1 H$), 0.40-0.36$ $(\mathrm{m}, 1 \mathrm{H}), 0.18(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (DMSOi d $170.4,159.7,155.3,145.3,138.5,134.7,127.8,122.7,118.7$, $118.6,116.9,116.8,116.7,116.6,111.1,105.1,78.2,55.1 .44 .6$, $30.3,29.7,29.3,28.7,28.2,26.0,25.5,22.0,12.7,6.6,3.9 \mathrm{ppm} ;$ IR (mineral oil $3386,3260,3141,3073,1679,1658,1610,1592$. 1553, 1488, 1444. $1393 \mathrm{~cm}^{-1}$; MS (EI m/z $577\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} 577.3026$, found 577.3058 .
[2-[[3-[Cyclopropyl(5,6,7,8,9,10-hexahydro-4-hydroxy-2-oxo- 2 H -cycloocta[b]pyran-3-yl)methyl]phenyl]amino]-1(S)-(1H-imidazol-4-ylmethyl)-2-oxoethyl]carbamic Acid, 1,1-Dimethylethyl Ester (41). An intermediate. |2-||3-
\mid cyclopropylf $5.6,7.8,9,10$-hexahydro-4-hydroxy-2-oxo-2H-cyclooctal b |pyran- 3 -yl imethyl]phenyl]aminol-1-[|1/SI-](4-meth-ylphenyl!sulfonyll-1 H -imidazol-5-yl|methyll-2-oxoethyllcarbamic acid, 1.1-dimethylethyl ester (43), was prepared from 24 as described in the representative procedure above: 0.349 $\mathrm{g}\left(48 \%\right.$) of white solid; mp $120-124^{\circ} \mathrm{C}$ dec; 'H NMR (CDCl), $\delta 9.85$ (brs, 1 H), 8.59 (br s, $1 \mathrm{HI}, 7.88$ (d, $J=8.0 \mathrm{~Hz} .2 \mathrm{H}$. $7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 7.28-7.1$. ($\mathrm{m}, 2 \mathrm{H}$) 6.55 (brs, 1 H$) .5 .92$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4.79 \mathrm{ibrs}$, $1 \mathrm{H}, 3.90$!d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 3.43-3.29(\mathrm{~m}, 1 \mathrm{H}, 3.02-2.89$ $(\mathrm{m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.74$ (m, 2 Hi, 1.61-1.36 (m, 8 H !, 1.32 (s, $9 \mathrm{H}, 0.74 \mathrm{~cm}, 1 \mathrm{H}, 0.58$ $0.51(\mathrm{~m}, 2 \mathrm{H}), 0.27(\mathrm{~m}, 1 \mathrm{H}) \mathrm{pmm} ;{ }^{23} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{1 ;}\right)$) 165.6. $161.4,161.3,146.3 .142 .3,138.1,136.0,130.5,130.4,130.1$. $129.6,127.2,126.9,123.8$. 119.1, 118.7, 115.0, 114.9. 110.7. $105.9,43.8 .30 .7,30.5,29.9,29.1,28.9,28.1,26.2,25.7 .22 .1$. 21.6, 14.1, 13.0. 5.0. 3.8 ppm ; IR mineral oil $3384,3297.3223$. $3148,3105,3076,1672,1612,1595,1558,1488,1446,1401$ cm^{-i} : MS EI miz $731\left(\mathrm{M}^{*}\right)$

In a $25-\mathrm{mL}$, two-necked, round-bottomed flask with a nitrogen inlet, $43 \quad 0.204 \mathrm{~g}, 0.51 \mathrm{mmol}$! was dissoived in 5 mL of THF. Hydroxybenztriazole (HOBT 10.207 g. 1.54 mmol) was added, and the solution was stirred at room temperature for 16 h . The reaction mixture was then concentrated in cacurl. Column chromatography on 30 g of silica gel elution with $2-15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}$,) yielded 0.255 of 41 contaminated with HOBT. The mixture was partitioned between chloroform and saturated NaHCO_{3}, and the organic layer was concentrated to give $0.221 \mathrm{~g}(75 \%)$ of 41 as a white solid: $\mathrm{mp} 160-165^{\circ} \mathrm{C}$
 $7.48 \mathrm{~m}, \underline{\mathrm{H}}, 7.14 \mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 7.05-6.98 \mathrm{~m}, 2$ $\mathrm{H}, 6.81 \mathrm{~s} .1 \mathrm{Hi}, 4.31 \mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~d}, . J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$. $2.94-2.77 \mathrm{im}, 2 \mathrm{H}, 1.85 \mathrm{im}, 1 \mathrm{H}, 1.63 \mathrm{~m}, 2 \mathrm{H}, 1.53 \mathrm{c} 111.2$ H), $1.42-1.23(\mathrm{~m}, 8 \mathrm{H}, 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.67(\mathrm{~m}, 1 \mathrm{H}), 0.41-0.37$ $(\mathrm{m}, 1 \mathrm{H}), 0.20(\mathrm{~m}, 1 \mathrm{H}), 0.10\left(\mathrm{~m} .1 \mathrm{H}\right.$ i ppni: ${ }^{2} \mathrm{C}$ NMR (DMSO$\left.d_{6}\right) \delta 170.5,159.7,155.3,145.0,138.5,134.7,127.8,122.6$. $118.7,118.6,116.9,116.8,116.7,116.6,110.8,105.4,78.2 .55 .1$. $44.7,30.3,29.7,29.3,28.7,28.2,26.0,25.5 .22 .0 .12 .6,6.6,3.9$ ppm IR (mineral oil $3292,3146,3075,1705,1660,1610.1592$. $1553,1488,1442,1427,1393 \mathrm{~cm}^{-1}$; MS (EI $\mathrm{m} / \mathrm{z} 577$ (M : HRMS caled for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{6} 577.3026$. found 577.3042 .

Acknowledgment. We would like to thank Steven J. Ray for the preparation of compounds $\mathbf{1 8}$ and 19.

References

(1) a, Debouk, C. The HIV. 1 Protease as a Therapeutic Target fin) AIDS. AIDS Res. Hum. Retrol: 1992.9. 153-164 and references cited therein, bi Darke. P. L.: Huff, J. R. HIV Protease as an Inhibitor Target for the Treatment of AIDS. In Adraliow il Pharmacology; August. J. T.. Ander, M. W.. Murad, R. Eids: Academic Press: San Diego. 1994; Vol. 25. pp 399-4.54.
(2) Thaisrivongs, S. Chapter 15. HIV Protease Inhibitors. Ammo. Rep. Med. Chem. 1994, 17, 133-144 and references cited therein.
B I a: Platiner. J. J.: Norbeck, D. W. Chapter 5. Obstacles tıD|ug Development fiom Pepide Leads. In Dreg Discocery Tiehmolo. give: Clark, C. R., Moos, W. H.. Eds.: Ellis Harwond: Chichester. England, 1990: pp 90-126. 'bi Olson, G. L.: Bolin. 1). R.: Bonner. M. P.: Bös. M. Cork, C. M. Fry. D. C.: Grares. B. J: Hatada. M.: Hill. D. E.; Kahn. M.: Madison, V. S.; Rusiecki. V. K.: Savaluu. R: Sepinwall, J.; Vincent, G. P:: Voss, M. E. Concepts and Progress in the Development of Peptide Mimetics \%. Mol. Chr\% 1993, 36, 3039-3049.
(4) dal Ronimes, K. R.; Thaisrivongs, S. Analngues of 4-Hydroxypyrune: Potent. Non-Peptidic HIV Protease Inhibitors. Drugs Futrre 1995. 20. 377-382 and references cited therein. bis Sut alsn: Vara Prasad. J. V. N.: Para. K. S.: Tumminu. P. I.: Ferguson, D.; McQuade. T. J.: Lunney. E. A.: Rapundalo. S. T.: Batley. B. L.: Hingorani. G.: Domagala, J. M.: Gracheck. S. J.: Bhat. T. N.: Liu, B.i BaIdwin. E. T.; Erickson, J. W.; Sawyer, T. K. Nonpeptidic Putent HIV-1 Protease Inhihitors: 14 -Hydroxy-6-phenyl-2-oxn-2H-pyran-3-y ithiomethanes That Span P1-P:2 Subsites in a Únique Mode of Active Site Binding. I Mid. Chem. 1995, 38. $898 \cdots 905$. .. See also refs 5 and 11 .
51 Romin.s. K. R.: Watenpaugh. K. D.: Tomich. P. K.: Hawe. W. J.: Morris. J. K Lovasz, K. D.: Mulichak. A. M.: Finzel. B. C. Lxin. J. C.: Horng. M. M.: Schwende. F. J.: Rıwari. M. J.: Zipp. G. L.: Chong, K.-T.: Dolak, L. A.: Toth. I. A.: Howard. G. M.: Rush. B. D.: Wilkinson. K. F.: Possert, P. L.: Datga. R. J.: Hinshaw. R. R. Lse of Medium-Sized Cycloalky Rinys "', Enhance Secondary Binding: Discusery of a New Clasio of HIV Protease Inhibitors. J. Mod, (hom, 1995. 38, 1884 18:11.
6. Similar reml:- were ntowred with the seven-membered ring analog of compound 1 . See ref 5 for derails.
\because HIV protease inhibition was meastred against HIV-1 prosease and K, values were dotermined as described in the following Thatsmangs. S.: Tomict. P. K.; Watenpaugh. K. D.: Chong, K.T.: Howe W. J.: Yang, C.P.: Strohlach, I. W.: Turner, S. T.: MeGrath. J P.:Bohamon. D. J.: Lynn. J. C.: Mulichak. A. M.: Spinelli. I'. A.: Hinshaw, R. R.: Paganı, P. J.: Mom, J. B.: Ruwart. M. J.: Wilkinann K. F.: Rush. B. D.: Zipp, G. L.: Dalga. R. J.: Schwende. F. .]: Howard. G. M.: Padbury, G. E.: Toth. L. N.: Zhar, Z.: Komplinger, K. A.; Kakuk. T. J.: Cole, S. L.: Zaya R. M. Diper. R. © : Jeffers. P. Strocture-Based Design of HIV Protease Inhibtors + -Hydroxymumarins and 4 -Hydroxye. prome: as Nimpeptidi, Inhibitors. I. Wed Chem. 1994, 37. $3200-3204$
s. Conformatinan analssis, ol he C-6 a-substituted cyeloalkyl rings was rarred ont as follows. X-ray erystal structures of unsub. stituted seven-and eight-membered cyelic analogs were removed from the prown and proper aroteps were attached at the (-6 a
 Minimum ferility in BatrhMin $3 . \mathbf{D}^{-3}$ was then used ta search the ring amfomational space. The search covered 1000 steps for the eight-menticred ring and $\overline{5} 00$ steps for the seven-membered ring. Eirlh Monte Callostep was minimized tasing the BatchMin MM2 lineefield. and dupiteates were eliminated. The final energy differences ropared in the text roresponded in the differner heween the worall lawest enory conformation in a particula matinvarialy having the propy group equaterial and the lowest conerg conformation that also had the propyl in the desined axial mpendaxial mentatimn, which would point thwand the $S^{\prime} \underline{y}^{\prime}$ subsite.
91 Mohamadi. F.: Richards. N. G. I.: Guida. W. C.: Liskamp. R.: Liptan, M.: T'aulield, (... Chang. G.: Hendrickson, T.: Still. W. (MacmMadel An Integrated Soliware System for Modeling Organic and Bionmanic Molecules L sing Molecular Mechanic*

 chirallIPLC wormation terhniques. First 2 was separated into its wo compunent onambumers as described in ref 5 , then each of there war alkyatwod usine indopropane as described in Scheme fand the resulting diatereomeric mixhures were separated Th. - - - mam inmor of $212 \mathrm{a}, K=3 \mathrm{~K}-3 \mathrm{nM}$ was used to maki: the mixture 11a $K_{0}=n \mathrm{~m}$. which wis subsequently sepa-
 $K_{i}=15 \cdot 16 n .11$. Likewise the \cdot - - enantiomer of $\mathbf{2} \cdot \mathbf{2 b} . K_{1}=$ 13 -2 20 min walkylated give the dastereomeric mixure
 n. M and $11 \mathrm{f} \cdot \mathrm{K}=90-36 \mathrm{n} . \mathrm{M}$.

1]. The wis. of metarmasaride substitution on the phengl ring has bowntly prown useftil in related templates. See: ThatsBoonts. S: Watempargl: K. D.: Howe. W. J.: Tomich, P. K.: Dhak. I. A. : 'homer K. T': Tramich C.-S. C.: Tomasell, A. G.: Tulner. S. R.: Sumbiach. I. W.: Mulichek. A. M.: Janakiraman.
 (ury, K. A.: Ro:hrock, D. J. Sutwetur-Based Demgn of Nowel HJV Protecse Inhilutors: Carboxtmede-Containing 4-Hydroxyconmalite and 4 -Hydirox-2-pyroner as Potent Non-peptidic Intilntws ./ Mat (\%nsi 1995. ?8, 3624-36:37.
 (. Rea-umas Anthmalamide with Isicyanates: A New Facile

13. Chheda. (. B.: Hong. ©. E. Suntheso of Naturally Occurring fi-Lroidepurines ans Their Luchatides. . . Mad (hem. 1971. 11. $544 .-5: 3$
 R.: Zugaza-Bilhow. A A Now R, Agen fur Activating Carboxy
 lidinul pherphowdianaidie Chloride. Suthesis 1980. 547-50]
 Orgatir Phershuras Cumpunds. J'anc 3. Synthosis of $\mathbf{5}$-Flunrosubstituted Benzothazuly Ibenzytuhusphonates. F Freterocerl. Chッm. 1989. 26. 1039-1043.
16. Antiviral octivity was weasured in HIV-i-infected Ho cells :1s cleserileed in chons. \mathbb{K} ?: Pagani, P. J.: Hinshaw, R. R. Bishetequablpiperazine Reverse Transeriptase Inhibitor in Combination with 3^{\prime}-Azidar-3'- Deoxythymidine or 2', 3'-Dideoxyctidine Simoristiolly Inibits Human Immunodeficiency Virus

17 A (Fetailed disutusirin and experimental data related to thesi
 at al latas that
18, Mulich;ik. A. D.: Hai. J. O: Thmaseelli, A. (r.: Heinrikam. R. L.: Coms. K. A: Tomich, C.A.: Thatsmongs. S.: Sawer. T. K.:

(19) Mildner. A. M.; Rothrock, D. J.; Leone, J. W.; Bannow, C. A.; Lull, J. M.; Reardon, I. M.; Sarchich, J. L.; Howe, W. J.; Tomich, C. C.: Smith, C. W.: Heinrikson, R. L.; Tomasselli, A. G. The HIV-1 Protease as Enzyme and Substrate: Mutagenesis of Autolysis Sites and Generation of a Stable Mutant and Retained Kinetic Properties. Biochemistry 1994, 33, 9405-9413.
(20) Howard, A. J.; Gilliland, G. L.; Finzel, B. C.; Poulos, T. L.; Ohlendorf, D. H.; Salemme, F. R. The Lise of an Imaging Proportional Counter in Macromolecular Crystallography. \bar{J}. Appl. Crvstallogr. 1987, 20, 383-387.
(21) Hendrickson, W. A.; Konnert, J. H. In Biomolecular Structure, Function and Evolution; Srinivasean, R., Ed.; Permagon Press: Oxford, 1980; pp 43-57.
!22! Watenpaugh, K. D. Conformational Energy as a Restraint in Refinement. In Proceeding of the Molecular Dynamics Workshop, 1984, Chapel Hill; Hermans, J., Ed.: Polycrystal Book: Western Springs. IL, 1985; pp 77-80.
(23) Jones. T. A. Interactive Computer Graphics: FRODO. Methods Enzumol. 1985, 115. 157-171.
(24) Sack, J. S. CHAIN: A Crystallographic Modeling Program. J. Mol. Graphics 1988, 6, 224-225.
(25) Xtal 3.0 Reference Manual; HalI, S. R., Stewart, J. M.. Eds.: Uiniversities of Western Australia, Perth and Maryland: College Park, MD, 1990.
(26) Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.: Brice, M. D.; Rogers, J. B.; Kennard, O.; Shimanouchi, T.: Tasumi, M. The Protein Data Bank: A Computer-based Archival File for Macromolecular Structures. J. Mol. Biol. 1977. 112. 535-542.
(27) Effenberger, F.; Ziegler, T.; Schönwälder. K.-H.; Kesmarszky, T.; Bauer, B. Die Acylierung von (Trimethylsilyl enolethern mit Malonyldichlorid-Darstellung von 4-Hydroxy-2H-pyran-2-onen. Acylation of trimethylsilyl enol ethers with malonyl dichlorideSynthesis of 4-hydroxy-2H-pyran-2-ones.! Chem. Ber. 1986.119. 3394-3404.

JM950453S

[^0]: + Structural, Analytical, and Medicinal Chemistry Research.
 ${ }^{\ddagger}$ Computer-Aided Drug Discovery.
 § Chemical and Biological Screening.
 ${ }^{\perp}$ Cancer and Infectious Diseases Research.
 ${ }^{\text {® Abstract published in Advance ACS Abstracts, October 1, } 1995 .}$

